Symplectic Tate homology

被引:7
|
作者
Albers, Peter [1 ]
Cieliebak, Kai [2 ]
Frauenfelder, Urs [3 ]
机构
[1] Univ Munster, Mathemat Inst, Einsteinstr 62, D-48149 Munster, Germany
[2] Univ Augsburg, Mathemat Inst, Univ Str 14, D-86159 Augsburg, Germany
[3] Seoul Natl Univ, Dept Math & Res, Inst Math, Seoul, South Korea
关键词
FLOER HOMOLOGY;
D O I
10.1112/plms/pdv065
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a Liouville domainW satisfying c(1)(W) = 0, we propose in this note two versions of symplectic Tate homology, <(H)under right arrow>(T) under left arrow-(W) and (H) under left arrow(T) under left arrow (W), which are related by a canonical map kappa: <(H)under right arrow>(T) under left arrow -> -(H) under left arrow(T) under left arrow (W). Our geometric approach to Tate homology uses the moduli space of finite energy gradient flow lines of the Rabinowitz action functional for a circle in the complex plane as a classifying space for S-1-equivariant Tate homology. For rational coefficients the symplectic Tate homology <(H)under right arrow>(T) under left arrow-(W; Q) has the fixed point property and is therefore isomorphic to H(W; Q)circle times(Q) Q[u, u(-1)], where Q[u, u(-1)] is the ring of Laurent polynomials over the rationals. Using a deep theorem of Goodwillie, we construct examples of Liouville domains where the canonical map. is not surjective and examples where it is not injective.
引用
收藏
页码:169 / 205
页数:37
相关论文
共 50 条
  • [1] Symplectic homology as Hochschild homology
    Seidel, Paul
    PROCEEDINGS OF SYMPOSIA IN PURE MATHEMATICS: ALGEBRAIC GEOMETRY SEATTLE 2005, VOL 80, PTS 1 AND 2, 2009, 80 : 415 - 434
  • [2] RABINOWITZ FLOER HOMOLOGY AND SYMPLECTIC HOMOLOGY
    Cieliebak, Kai
    Frauenfelder, Urs
    Oancea, Alexandru
    ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2010, 43 (06): : 957 - 1015
  • [3] Remarks on Balance for Tate and Generalized Tate (Co)homology
    Chaoling Huang
    Kaituo Liu
    Bulletin of the Iranian Mathematical Society, 2020, 46 : 1283 - 1305
  • [4] Remarks on Balance for Tate and Generalized Tate (Co)homology
    Huang, Chaoling
    Liu, Kaituo
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2020, 46 (05) : 1283 - 1305
  • [5] Vanishing of Tate Homology - An Application of Stable Homology for Complexes
    Liu, Yan Ping
    Liu, Zhong Kui
    Yang, Xiao Yan
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2016, 32 (07) : 831 - 844
  • [6] Vanishing of Tate Homology — An Application of Stable Homology for Complexes
    Yan Ping LIU
    Zhong Kui LIU
    Xiao Yan YANG
    Acta Mathematica Sinica,English Series, 2016, (07) : 831 - 844
  • [7] Vanishing of Tate Homology — An Application of Stable Homology for Complexes
    Yan Ping LIU
    Zhong Kui LIU
    Xiao Yan YANG
    Acta Mathematica Sinica, 2016, 32 (07) : 831 - 844
  • [8] Vanishing of Tate homology — An application of stable homology for complexes
    Yan Ping Liu
    Zhong Kui Liu
    Xiao Yan Yang
    Acta Mathematica Sinica, English Series, 2016, 32 : 831 - 844
  • [9] Tate Homology of Modules Based on Tate FC-Resolutions
    Ma, Pengju
    Zhao, Renyu
    Luo, Xiaoqiang
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2018, 44 (02): : 329 - 340
  • [10] Symplectic homology and periodic orbits near symplectic submanifolds
    Cieliebak, K
    Ginzburg, VL
    Kerman, E
    COMMENTARII MATHEMATICI HELVETICI, 2004, 79 (03) : 554 - 581