Thermal runaway modeling of lithium-ion batteries at different scales: Recent advances and perspectives

被引:12
|
作者
Peng, Rongqi [1 ]
Kong, Depeng [1 ,3 ]
Ping, Ping [2 ,3 ]
Wang, Gongquan [1 ]
Gao, Xinzeng [1 ]
Lv, Hongpeng [1 ]
Zhao, Hengle [1 ]
He, Xu [1 ]
Zhang, Yue [1 ]
Dai, Xinyi [1 ]
机构
[1] China Univ Petr East China, Ctr Offshore Engn & Safety Technol, Qingdao 266580, Peoples R China
[2] China Univ Petr East China, Coll Chem Engn, Qingdao 266580, Peoples R China
[3] China Univ Petr East China, State Key Lab Chem Safety, Qingdao 266580, Peoples R China
基金
中国国家自然科学基金;
关键词
Lithium -ion battery; Battery safety; Thermal runaway; Numerical model; Multi-scale modeling; Multiphysics coupling; INTERNAL SHORT-CIRCUIT; EXTERNAL SHORT-CIRCUIT; ACCELERATING RATE CALORIMETRY; DIMETHYL CARBONATE; ELECTRIC VEHICLES; CATHODE MATERIALS; METAL-OXIDE; ELECTROCHEMICAL PROPERTIES; INTERCALATED GRAPHITE; FAILURE MECHANISMS;
D O I
10.1016/j.ensm.2024.103417
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Large-scale application of lithium-ion batteries (LIBs) is limited by the safety concerns induced by thermal runaway (TR). In the field of TR research, numerical simulation, with its low risk and suitable cost, has become a key method to study the characteristics and mechanism of TR in LIBs. Early endeavors in TR modeling mainly concentrated on individual cells or a single scale, which may not completely predict the failure of cells in applications at the system scale, where various physical phenomena can take place simultaneously in a multitude of cells. This paper presents a comprehensive review of TR modeling technologies for LIBs from multi-scale perspectives. Firstly, the mechanism of LIBs' internal heat generation and the modeling process of the reaction kinetics are elucidated at the particle scale. Subsequently, TR triggering mechanisms of LIBs are expounded under various abuse conditions at the cell-scale, and the related models from single-physical to multi-physical fields are introduced. Evolution processes and underlying mechanisms of gas generation, venting, and combustion induced by TR are also analyzed, along with the latest modeling research. For the module scale, three technologies for the TR propagation are introduced, and the modeling studies are reviewed for the prediction of various behaviors affecting TR propagation. Then the discussion is conducted on TR modeling studies for gas diffusion, fire propagation, and gas explosion involved at the system scale. Finally, several strategies have been proposed to accelerate TR modeling technologies to embrace the trend of multi-scale models and multi-physics field coupled models.
引用
收藏
页数:42
相关论文
共 50 条
  • [1] Advances and challenges in thermal runaway modeling of lithium-ion batteries
    Wang, Gongquan
    Ping, Ping
    Kong, Depeng
    Peng, Rongqi
    He, Xu
    Zhang, Yue
    Dai, Xinyi
    Wen, Jennifer
    INNOVATION, 2024, 5 (04):
  • [2] Advances in Prevention of Thermal Runaway in Lithium-Ion Batteries
    McKerracher, Rachel D.
    Guzman-Guemez, Jorge
    Wills, Richard G. A.
    Sharkh, Suleiman M.
    Kramer, Denis
    ADVANCED ENERGY AND SUSTAINABILITY RESEARCH, 2021, 2 (05):
  • [3] MODELING THERMAL RUNAWAY IN PRISMATIC LITHIUM-ION BATTERIES
    Khan, Shehzad
    Anwar, Sohail
    Casa, Jairo
    Hasnain, Muhammad
    Ahmed, Hossain
    Sezer, Hayri
    PROCEEDINGS OF ASME 2023 INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, IMECE2023, VOL 10, 2023,
  • [4] Advances on Mechanism of Degradation and Thermal Runaway of Lithium-Ion Batteries
    Guo B.
    Liu X.
    He R.
    Gao X.
    Yan X.
    Yang S.
    Xiyou Jinshu/Chinese Journal of Rare Metals, 2024, 48 (02): : 225 - 239
  • [5] Recycling of lithium-ion batteries: Recent advances and perspectives
    Huang, Bin
    Pan, Zhefei
    Su, Xiangyu
    An, Liang
    JOURNAL OF POWER SOURCES, 2018, 399 : 274 - 286
  • [6] Modeling thermal runaway of lithium-ion batteries with a venting process
    He, C. X.
    Yue, Q. L.
    Chen, Q.
    Zhao, T. S.
    APPLIED ENERGY, 2022, 327
  • [7] Review of mechanical abuse related thermal runaway models of lithium-ion batteries at different scales
    Xiao, Yang
    Yang, Faqing
    Gao, Zhenhai
    Liu, Mengjun
    Wang, Jie
    Kou, Zitao
    Lin, Yutong
    Li, Yiyao
    Gao, Liumiao
    Chen, Yu
    Ren, Sida
    Li, Xinzhuo
    JOURNAL OF ENERGY STORAGE, 2023, 64
  • [8] Mitigating Thermal Runaway of Lithium-Ion Batteries
    Feng, Xuning
    Ren, Dongsheng
    He, Xiangming
    Ouyang, Minggao
    JOULE, 2020, 4 (04) : 743 - 770
  • [9] Research advances on thermal runaway mechanism of lithium-ion batteries and safety improvement
    He, Dan
    Wang, Jialin
    Peng, Yanjun
    Li, Baofeng
    Feng, Chang
    Shen, Lin
    Ma, Shouxiao
    SUSTAINABLE MATERIALS AND TECHNOLOGIES, 2024, 41
  • [10] Numerical modeling of thermal runaway for low temperature cycling lithium-ion batteries
    Zhao, Luyao
    Zheng, Minxue
    Zhang, Junming
    Liu, Hong
    Li, Wei
    Chen, Mingyi
    JOURNAL OF ENERGY STORAGE, 2023, 63