The Gauge Theory of Measurement-Based Quantum Computation

被引:0
|
作者
Wong, Gabriel [1 ,2 ]
Raussendorf, Robert [3 ,4 ]
Czech, Bartlomiej [5 ]
机构
[1] Harvard Univ, Ctr Math Sci & Applicat, Cambridge, MA 02138 USA
[2] Univ Oxford, Radcliffe Observ Quarter, Math Inst, Woodstock Rd, Oxford OX2 6GG, England
[3] Leibniz Univ Hannover, Inst Theoret Phys, Appelstr 2, D-30167 Hannover, Germany
[4] Univ British Columbia, Stewart Blusson Quantum Matter Inst, Vancouver, BC, Canada
[5] Tsinghua Univ, Inst Adv Study, Beijing 100084, Peoples R China
来源
QUANTUM | 2024年 / 8卷
基金
加拿大自然科学与工程研究理事会;
关键词
BOND GROUND-STATES; ENTANGLEMENT;
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Measurement-Based Quantum Computation (MBQC) is a model of quantum computation, which uses local measurements instead of unitary gates. Here we explain that the MBQC procedure has a fundamental basis in an underlying gauge theory. This perspective provides a theoretical foundation for global aspects of MBQC. The gauge transformations reflect the freedom of formulating the same MBQC computation in different local reference frames. The main identifications between MBQC and gauge theory concepts are: (i) the computational output of MBQC is a holonomy of the gauge field, (ii) the adaptation of measurement basis that remedies the inherent randomness of quantum measurements is effected by gauge transformations. The gauge theory of MBQC also plays a role in characterizing the entanglement structure of symmetryprotected topologically (SPT) ordered states, which are resources for MBQC. Our framework situates MBQC in a broader context of condensed matter and high energy theory.
引用
收藏
页数:48
相关论文
共 50 条
  • [31] Fidelity of measurement-based quantum computation in a bosonic environment
    Wang, Jian
    Zhong, Ding
    Mu, Liangzhu
    Fan, Heng
    PHYSICAL REVIEW A, 2014, 90 (05):
  • [32] Minimum heat dissipation in measurement-based quantum computation
    Morimae, Tomoyuki
    PHYSICAL REVIEW A, 2015, 91 (04):
  • [33] Hybrid architecture for encoded measurement-based quantum computation
    Zwerger, M.
    Briegel, H. J.
    Duer, W.
    SCIENTIFIC REPORTS, 2014, 4
  • [34] Computational Depth Complexity of Measurement-Based Quantum Computation
    Browne, Dan
    Kashefi, Elham
    Perdrix, Simon
    THEORY OF QUANTUM COMPUTATION, COMMUNICATION, AND CRYPTOGRAPHY, 2011, 6519 : 35 - +
  • [35] Improved Measurement-Based Blind Quantum Computation Protocol
    Yan Yuzhan
    Yang Zhen
    Luo Yuanmao
    Wu Guangyang
    Bai Mingqiang
    Mo Zhiwen
    LASER & OPTOELECTRONICS PROGRESS, 2024, 61 (09)
  • [36] Self-guaranteed measurement-based quantum computation
    Hayashi, Masahito
    Hajdusek, Michal
    PHYSICAL REVIEW A, 2018, 97 (05)
  • [37] Outcome determinism in measurement-based quantum computation with qudits
    Booth, Robert, I
    Kissinger, Aleks
    Markham, Damian
    Meignant, Clement
    Perdrix, Simon
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2023, 56 (11)
  • [38] Towards minimal resources of measurement-based quantum computation
    Perdrix, Simon
    NEW JOURNAL OF PHYSICS, 2007, 9
  • [39] Measurement-based quantum computation cannot avoid byproducts
    Morimae, Tomoyuki
    INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2014, 12 (05)
  • [40] Variational measurement-based quantum computation for generative modeling
    Majumder, Arunava
    Krumm, Marius
    Radkohl, Tina
    Fiderer, Lukas J.
    Nautrup, Hendrik Poulsen
    Jerbi, Sofiene
    Briegel, Hans J.
    PHYSICAL REVIEW A, 2024, 110 (06)