The Gauge Theory of Measurement-Based Quantum Computation

被引:0
|
作者
Wong, Gabriel [1 ,2 ]
Raussendorf, Robert [3 ,4 ]
Czech, Bartlomiej [5 ]
机构
[1] Harvard Univ, Ctr Math Sci & Applicat, Cambridge, MA 02138 USA
[2] Univ Oxford, Radcliffe Observ Quarter, Math Inst, Woodstock Rd, Oxford OX2 6GG, England
[3] Leibniz Univ Hannover, Inst Theoret Phys, Appelstr 2, D-30167 Hannover, Germany
[4] Univ British Columbia, Stewart Blusson Quantum Matter Inst, Vancouver, BC, Canada
[5] Tsinghua Univ, Inst Adv Study, Beijing 100084, Peoples R China
来源
QUANTUM | 2024年 / 8卷
基金
加拿大自然科学与工程研究理事会;
关键词
BOND GROUND-STATES; ENTANGLEMENT;
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Measurement-Based Quantum Computation (MBQC) is a model of quantum computation, which uses local measurements instead of unitary gates. Here we explain that the MBQC procedure has a fundamental basis in an underlying gauge theory. This perspective provides a theoretical foundation for global aspects of MBQC. The gauge transformations reflect the freedom of formulating the same MBQC computation in different local reference frames. The main identifications between MBQC and gauge theory concepts are: (i) the computational output of MBQC is a holonomy of the gauge field, (ii) the adaptation of measurement basis that remedies the inherent randomness of quantum measurements is effected by gauge transformations. The gauge theory of MBQC also plays a role in characterizing the entanglement structure of symmetryprotected topologically (SPT) ordered states, which are resources for MBQC. Our framework situates MBQC in a broader context of condensed matter and high energy theory.
引用
收藏
页数:48
相关论文
共 50 条
  • [21] Research progress of measurement-based quantum computation
    Zhang Shi-Hao
    Zhang Xiang-Dong
    Li Lu-Zhou
    ACTA PHYSICA SINICA, 2021, 70 (21)
  • [22] Measurement-Based and Universal Blind Quantum Computation
    Broadbent, Anne
    Fitzsimons, Joseph
    Kashefi, Elham
    FORMAL METHODS FOR QUANTITATIVE ASPECTS OF PROGRAMMING LANGUAGES, 2010, 6154 : 43 - +
  • [23] Blind topological measurement-based quantum computation
    Tomoyuki Morimae
    Keisuke Fujii
    Nature Communications, 3
  • [24] Universal resources for measurement-based quantum computation
    Van den Nest, Maarten
    Miyake, Akimasa
    Duer, Wolfgang
    Briegel, Hans J.
    PHYSICAL REVIEW LETTERS, 2006, 97 (15)
  • [25] Quantum advantage in temporally flat measurement-based quantum computation
    de Oliveira, Michael
    Barbosa, Luis Soares
    Galvao, Ernesto F.
    QUANTUM, 2024, 8
  • [26] Quantum advantage in temporally flat measurement-based quantum computation
    de Oliveira, Michael
    Barbosa, Luis Soares
    Galvao, Ernesto F.
    QUANTUM, 2024, 8 : 1 - 62
  • [27] Qiskit As a Simulation Platform for Measurement-based Quantum Computation
    Kashif, Muhammad
    Al-Kuwari, Saif
    2022 IEEE 19TH INTERNATIONAL CONFERENCE ON SOFTWARE ARCHITECTURE COMPANION (ICSA-C 2022), 2022, : 152 - 159
  • [28] Closed timelike curves in measurement-based quantum computation
    da Silva, Raphael Dias
    Galvao, Ernesto F.
    Kashefi, Elham
    PHYSICAL REVIEW A, 2011, 83 (01):
  • [29] Generalized flow and determinism in measurement-based quantum computation
    Browne, Daniel E.
    Kashefi, Elham
    Mhalla, Mehdi
    Perdrix, Simon
    NEW JOURNAL OF PHYSICS, 2007, 9
  • [30] Verifiable fault tolerance in measurement-based quantum computation
    Fujii, Keisuke
    Hayashi, Masahito
    PHYSICAL REVIEW A, 2017, 96 (03)