Iwasawa theory of fine Selmer groups associated to Drinfeld modules

被引:0
|
作者
Ray, Anwesh [1 ]
机构
[1] Chennai Math Inst, H1,SIPCOT IT Pk, Siruseri 603103, Tamil Nadu, India
关键词
D O I
10.1112/mtk.12264
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let q$q$ be a prime power and F=Fq(T)$F=\mathbb {F}_q(T)$ be the rational function field over Fq$\mathbb {F}_q$, the field with q$q$ elements. Let phi$\phi$ be a Drinfeld module over F$F$ and p$\mathfrak {p}$ be a nonzero prime ideal of A:=Fq[T]$A:=\mathbb {F}_q[T]$. Over the constant Zp$\mathbb {Z}_p$-extension of F$F$, we introduce the fine Selmer group associated to the p$\mathfrak {p}$-primary torsion of phi$\phi$. We show that it is a cofinitely generated module over Ap$A_{\mathfrak {p}}$. This proves an analogue of Iwasawa's mu=0$\mu =0$ conjecture in this setting, and provides context for the further study of the objects that have been introduced in this article.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] Control theorems for fine Selmer groups, and duality of fine Selmer groups attached to modular forms
    Hatley, Jeffrey
    Kundu, Debanjana
    Lei, Antonio
    Ray, Jishnu
    RAMANUJAN JOURNAL, 2023, 60 (01): : 237 - 258
  • [22] Fine Selmer groups and ideal class groups
    Kleine, Soren
    Mueller, Katharina
    RAMANUJAN JOURNAL, 2023, 61 (04): : 1213 - 1267
  • [23] Fine Selmer groups and ideal class groups
    Sören Kleine
    Katharina Müller
    The Ramanujan Journal, 2023, 61 : 1213 - 1267
  • [24] Cogalois theory and drinfeld modules
    Antonio Sanchez-Mirafuentes, Marco
    Cesar Salas-Torres, Julio
    Villa-Salvador, Gabriel
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2020, 19 (01)
  • [25] Kummer theory for Drinfeld modules
    Pink, Richard
    ALGEBRA & NUMBER THEORY, 2016, 10 (02) : 215 - 234
  • [26] On the Hida deformations of fine Selmer groups
    Jha, Somnath
    Sujatha, R.
    JOURNAL OF ALGEBRA, 2011, 338 (01) : 180 - 196
  • [27] Control Theorems for Fine Selmer Groups
    Kundu, Debanjana
    Lim, Meng Fai
    JOURNAL DE THEORIE DES NOMBRES DE BORDEAUX, 2022, 34 (03): : 851 - 880
  • [28] Fine Selmer Groups and Isogeny Invariance
    Sujatha, R.
    Witte, M.
    GEOMETRY, ALGEBRA, NUMBER THEORY, AND THEIR INFORMATION TECHNOLOGY APPLICATIONS, 2018, 251 : 419 - 444
  • [29] Growth of Selmer groups and fine Selmer groups in uniform pro-p extensions
    Kundu, Debanjana
    ANNALES MATHEMATIQUES DU QUEBEC, 2021, 45 (02): : 347 - 362
  • [30] Growth of Selmer groups and fine Selmer groups in uniform pro-p extensions
    Debanjana Kundu
    Annales mathématiques du Québec, 2021, 45 : 347 - 362