Kummer theory for Drinfeld modules

被引:5
|
作者
Pink, Richard [1 ]
机构
[1] ETH, Dept Math, CH-8092 Zurich, Switzerland
关键词
DIVISION POINTS;
D O I
10.2140/ant.2016.10.215
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let phi be a Drinfeld A-module of characteristic p(0) over a finitely generated field K. Previous articles determined the image of the absolute Galois group of K up to commensurability in its action on all prime-to-p(0) torsion points of phi, or equivalently, on the prime-to-p(0) adelic Tate module of phi. In this article we consider in addition a finitely generated torsion free A-submodule M of K for the action of A through phi. We determine the image of the absolute Galois group of K up to commensurability in its action on the prime-to-p(0) division hull of M, or equivalently, on the extended prime-to-p(0) adelic Tate module associated to phi and M.
引用
收藏
页码:215 / 234
页数:20
相关论文
共 50 条
  • [1] A note on Kummer theory of division points over singular Drinfeld modules
    Li, AL
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2001, 64 (01) : 15 - 20
  • [2] Kummer theory of division points over Drinfeld modules of rank one
    Chi, WC
    Li, AL
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2001, 156 (2-3) : 171 - 185
  • [3] Cogalois theory and drinfeld modules
    Antonio Sanchez-Mirafuentes, Marco
    Cesar Salas-Torres, Julio
    Villa-Salvador, Gabriel
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2020, 19 (01)
  • [4] Galois theory of Moore-Carlitz-Drinfeld modules
    Abhyankar, SS
    Sundaram, GS
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1997, 325 (04): : 349 - 353
  • [5] Iwasawa theory of fine Selmer groups associated to Drinfeld modules
    Ray, Anwesh
    MATHEMATIKA, 2024, 70 (03)
  • [6] Drinfeld modules in SageMath
    Ayotte, David
    Caruso, Xavier
    Leudiere, Antoine
    Musleh, Joseph
    ACM COMMUNICATIONS IN COMPUTER ALGEBRA, 2023, 57 (02): : 65 - 71
  • [7] Drinfeld–Stuhler modules
    Mihran Papikian
    Research in the Mathematical Sciences, 2018, 5
  • [8] Cyclicity of Drinfeld modules
    Kuo, Wentang
    Tweedle, David
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2021, 53 (05) : 1500 - 1519
  • [9] ON FINITE DRINFELD MODULES
    GEKELER, EU
    JOURNAL OF ALGEBRA, 1991, 141 (01) : 187 - 203
  • [10] THE ARITHMETIC OF DRINFELD MODULES
    GEKELER, EU
    MATHEMATISCHE ANNALEN, 1983, 262 (02) : 167 - 182