Iwasawa theory of fine Selmer groups associated to Drinfeld modules

被引:0
|
作者
Ray, Anwesh [1 ]
机构
[1] Chennai Math Inst, H1,SIPCOT IT Pk, Siruseri 603103, Tamil Nadu, India
关键词
D O I
10.1112/mtk.12264
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let q$q$ be a prime power and F=Fq(T)$F=\mathbb {F}_q(T)$ be the rational function field over Fq$\mathbb {F}_q$, the field with q$q$ elements. Let phi$\phi$ be a Drinfeld module over F$F$ and p$\mathfrak {p}$ be a nonzero prime ideal of A:=Fq[T]$A:=\mathbb {F}_q[T]$. Over the constant Zp$\mathbb {Z}_p$-extension of F$F$, we introduce the fine Selmer group associated to the p$\mathfrak {p}$-primary torsion of phi$\phi$. We show that it is a cofinitely generated module over Ap$A_{\mathfrak {p}}$. This proves an analogue of Iwasawa's mu=0$\mu =0$ conjecture in this setting, and provides context for the further study of the objects that have been introduced in this article.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Adjoint Selmer groups as Iwasawa modules
    Hida, H
    ISRAEL JOURNAL OF MATHEMATICS, 2000, 120 (2) : 361 - 427
  • [2] Adjoint selmer groups as Iwasawa modules
    Haruzo Hida
    Israel Journal of Mathematics, 2000, 120 : 361 - 427
  • [3] Boundedness of Iwasawa Invariants of Fine Selmer Groups and Selmer Groups
    Kleine, Soeren
    Matar, Ahmed
    RESULTS IN MATHEMATICS, 2023, 78 (04)
  • [4] Boundedness of Iwasawa Invariants of Fine Selmer Groups and Selmer Groups
    Sören Kleine
    Ahmed Matar
    Results in Mathematics, 2023, 78
  • [5] On the μ equals zero conjecture for fine Selmer groups in Iwasawa theory
    Deo, Shaunak, V
    Ray, Anwesh
    Sujatha, R.
    PURE AND APPLIED MATHEMATICS QUARTERLY, 2023, 19 (02) : 641 - 680
  • [6] Iwasawa theory of the fine Selmer group
    Wuthrich, Christian
    JOURNAL OF ALGEBRAIC GEOMETRY, 2007, 16 (01) : 83 - 108
  • [7] Selmer groups in Iwasawa theory and congruences
    Sujatha, Ramdorai
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2020, 378 (2163):
  • [8] Arithmetic statistics for the fine Selmer group in Iwasawa theory
    Anwesh Ray
    R. Sujatha
    Research in Number Theory, 2023, 9
  • [9] Arithmetic statistics for the fine Selmer group in Iwasawa theory
    Ray, Anwesh
    Sujatha, R.
    RESEARCH IN NUMBER THEORY, 2023, 9 (03)
  • [10] Bounding the Iwasawa invariants of Selmer groups
    Kleine, Soeren
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2021, 73 (05): : 1390 - 1422