Multi-Model Machine Learning Approach Accurately Predicts Lake Dissolved Oxygen With Multiple Environmental Inputs

被引:1
|
作者
Lin, Shuqi [1 ,2 ,3 ]
Pierson, Donald C. [2 ,3 ]
Ladwig, Robert [4 ]
Kraemer, Benjamin M. [5 ]
Hu, Fenjuan R. S. [6 ]
机构
[1] Canada Ctr Inland Waters, Environm & Climate Change Canada, Burlington, ON, Canada
[2] Uppsala Univ, Erken Lab, Uppsala, Sweden
[3] Uppsala Univ, Limnol Dept, Uppsala, Sweden
[4] Univ Wisconsin Madison, Ctr Limnol, Madison, WI USA
[5] IGB Leibniz Inst Freshwater Ecol & Inland Fisherie, Berlin, Germany
[6] VIA Univ Coll, Res Ctr Bldg Energy Water & Climate, Horsens, Denmark
关键词
LONG-TERM CHANGES; CLIMATE-CHANGE; CENTRAL BASIN; NORTH SHORE; HYPOXIA; PHOSPHORUS; DEPLETION; MODEL; VARIABILITY; DYNAMICS;
D O I
10.1029/2023EA003473
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
As a key water quality parameter, dissolved oxygen (DO) concentration, and particularly changes in bottom water DO is fundamental for understanding the biogeochemical processes in lake ecosystems. Based on two machine learning (ML) models, Gradient Boost Regressor (GBR) and long-short-term-memory (LSTM) network, this study developed three ML model approaches: direct GBR; direct LSTM; and a 2-step mixed ML model workflow combining both GBR and LSTM. They were used to simulate multi-year surface and bottom DO concentrations in five lakes. All approaches were trained with readily available environmental data as predictors. Indices of lake thermal structure and mixing provided by a one-dimensional (1-D) hydrodynamic model were also included as predictors in the ML models. The advantages of each ML approach were not consistent for all the tested lakes, but the best one of them was defined that can estimate DO concentration with coefficient of determination (R2) up to 0.6-0.7 in each lake. All three approaches have normalized mean absolute error (NMAE) under 0.15. In a polymictic lake, the 2-step mixed model workflow showed better representation of bottom DO concentrations, with a highest true positive rate (TPR) of hypolimnetic hypoxia detection of over 90%, while the other workflows resulted in, TPRs are around 50%. In most of the tested lakes, the predicted surface DO concentrations and variables indicating stratified conditions (i.e., Wedderburn number and the temperature difference between surface and bottom water) are essential for simulating bottom DO. The ML approaches showed promising results and could be used to support short- and long-term water management plans. Dissolved oxygen (DO) concentrations is the essential water quality parameter in lake systems. Nowadays, with the development of data-driven machine learning (ML) models, prediction of DO concentrations can be achieved via these models in lakes with long-term DO concentration observations. This study developed three ML model approaches with one mixed two kind of ML models, and test them in five lakes. Readily available environmental data and the derived hydrodynamic data from process-based hydrodynamic model were used as predictors. All three ML approaches showed promising results, and the mixed ML approach show better skill in the lake stratifying and mixing irregularly. To predict hypoxia in the bottom of the lake, the surface DO concentrations and variables indicating water column stratification are important. A 2-step machine learning workflow combining Gradient Boost Regressor and long-short-term-memory was applied to simulate dissolved oxygen A one-dimensional process-based hydrodynamic model provides ML models with indices of lake thermal structure and mixing In a polymictic lake, the 2-step mixed machine learning workflow showed over 90% true positive rate of hypolimnetic hypoxia detection
引用
收藏
页数:16
相关论文
共 50 条
  • [21] A multi-model approach to stakeholder engagement in complex environmental problems
    Fulton, E. A.
    Jones, T.
    Boschetti, F.
    Sporcic, M.
    De LA Mare, W.
    Syme, G.
    Dzidic, P.
    Gorton, R.
    Little, L. R.
    Dambacher, G.
    Chapman, K.
    19TH INTERNATIONAL CONGRESS ON MODELLING AND SIMULATION (MODSIM2011), 2011, : 3098 - 3104
  • [22] A Queueing Analysis of Multi-model Multi-input Machine Learning Systems
    Makino, Yuta
    Phung-Duc, Tuan
    Machida, Fumio
    51ST ANNUAL IEEE/IFIP INTERNATIONAL CONFERENCE ON DEPENDABLE SYSTEMS AND NETWORKS (DSN-W 2021), 2021, : 141 - 149
  • [23] Mapping groundwater contamination risk of multiple aquifers using multi-model ensemble of machine learning algorithms
    Barzegar, Rahim
    Moghaddam, Asghar Asghari
    Deo, Ravinesh
    Fijani, Elham
    Tziritis, Evangelos
    SCIENCE OF THE TOTAL ENVIRONMENT, 2018, 621 : 697 - 712
  • [24] Predicting firm creation in rural Texas: A multi-model machine learning approach to a complex policy problem
    Hand, Mark
    Shastry, Vivek
    Rai, Varun
    PLOS ONE, 2023, 18 (06):
  • [25] Deterministic Learning Machine for Face Recognition with Multi-model Feature Extraction
    Vishwakarma, Virendra P.
    2016 NINTH INTERNATIONAL CONFERENCE ON CONTEMPORARY COMPUTING (IC3), 2016, : 423 - 428
  • [26] Concept drift detection for distributed multi-model machine learning systems
    Quon, Beverly Abadines
    Gaudiot, Jean-Luc
    2022 IEEE 46TH ANNUAL COMPUTERS, SOFTWARE, AND APPLICATIONS CONFERENCE (COMPSAC 2022), 2022, : 1076 - 1080
  • [27] An Externally Validated Machine Learning Ensemble Model Accurately Predicts Important Neurosurgical Outcomes
    Muhlestein, Whitney
    Chambless, Lola Blackwell
    NEUROSURGERY, 2017, 64 : 292 - 292
  • [28] Multi-step ahead suspended sediment load modeling using machine learning- multi-model approach
    Gelete, Gebre
    Nourani, Vahid
    Gokcekus, Huseyin
    Gichamo, Tagesse
    EARTH SCIENCE INFORMATICS, 2024, 17 (01) : 633 - 654
  • [29] An Ensemble Learning Approach of Multi-Model for Classifying House Damage
    Fan, Junqiao
    Xu, Chun
    Zhang, Jiahe
    2021 2ND INTERNATIONAL CONFERENCE ON BIG DATA & ARTIFICIAL INTELLIGENCE & SOFTWARE ENGINEERING (ICBASE 2021), 2021, : 145 - 152
  • [30] A multi-model approach for supporting the personalization of ubiquitous learning applications
    Paredes, RG
    Ogata, H
    Yano, Y
    Martin, GAS
    IEEE INTERNATIONAL WORKSHOP ON WIRELESS AND MOBILE TECHNOLOGIES IN EDUCATION, PROCEEDINGS, 2005, : 40 - 44