Classifying and Predicting the Thermal Expansion Properties of Metal-Organic Frameworks: A Data-Driven Approach

被引:2
|
作者
Yue, Yifei [1 ,2 ]
Mohamed, Saad Aldin [1 ]
Jiang, Jianwen [1 ,2 ]
机构
[1] Natl Univ Singapore, Dept Chem & Biomol Engn, Singapore 117576, Singapore
[2] Natl Univ Singapore, Integrat Sci & Engn Programme, Singapore 119077, Singapore
基金
新加坡国家研究基金会;
关键词
CRYSTAL-STRUCTURES; FORCE-FIELD; DESIGN; MOFS;
D O I
10.1021/acs.jcim.4c00057
中图分类号
R914 [药物化学];
学科分类号
100701 ;
摘要
Metal-organic frameworks (MOFs) are versatile materials for a wide variety of potential applications. Tunable thermal expansion properties promote the application of MOFs in thermally sensitive composite materials; however, they are currently available only in a handful of structures. Herein, we report the first data set for thermal expansion properties of 33,131 diverse MOFs generated from molecular simulations and subsequently develop machine learning (ML) models to (1) classify different thermal expansion behaviors and (2) predict volumetric thermal expansion coefficients (alpha(V)). The random forest model trained on hybrid descriptors combining geometric, chemical, and topological features exhibits the best performance among different ML models. Based on feature importance analysis, linker chemistry and topological arrangement are revealed to have a dominant impact on thermal expansion. Furthermore, we identify common building blocks in MOFs with exceptional thermal expansion properties. This data-driven study is the first of its kind, not only constructing a useful data set to facilitate future studies on this important topic but also providing design guidelines for advancing new MOFs with desired thermal expansion properties.
引用
收藏
页码:4966 / 4979
页数:14
相关论文
共 50 条
  • [21] Negative Thermal Expansion Design Strategies in a Diverse Series of Metal-Organic Frameworks
    Burtch, Nicholas C.
    Baxter, Samuel J.
    Heinen, Jurn
    Bird, Ashley
    Schneemann, Andreas
    Dubbeldam, David
    Wilkinson, Angus P.
    ADVANCED FUNCTIONAL MATERIALS, 2019, 29 (48)
  • [22] Assessing negative thermal expansion in mesoporous metal-organic frameworks by molecular simulation
    Evans, Jack D.
    Duerholt, Johannes P.
    Kaskel, Stefan
    Schmid, Rochus
    JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7 (41) : 24019 - 24026
  • [23] Node Distortion as a Tunable Mechanism for Negative Thermal Expansion in Metal-Organic Frameworks
    Chen, Zhihengyu
    Stroscio, Gautam D.
    Liu, Jian
    Lu, Zhiyong
    Hupp, Joseph T.
    Gagliardi, Laura
    Chapman, Karena W.
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2023, 145 (01) : 268 - 276
  • [24] Tailoring properties of metal-organic frameworks
    Park, Jihye
    Feng, Dawei
    Bao, Zhenan
    Zhou, Hongcai
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2017, 254
  • [25] Mechanical properties of metal-organic frameworks
    Redfern, Louis R.
    Farha, Omar K.
    CHEMICAL SCIENCE, 2019, 10 (46) : 10666 - 10679
  • [26] Topological properties of metal-organic frameworks
    Awais, Hafiz Muhammad
    Jamal, Muhammad
    Javaid, Muhammad
    MAIN GROUP METAL CHEMISTRY, 2020, 43 (01) : 67 - 76
  • [27] Acoustic Properties of Metal-Organic Frameworks
    Li, Zhi-Gang
    Li, Kai
    Dong, Li-Yuan
    Guo, Tian-Meng
    Azeem, Muhammad
    Li, Wei
    Bu, Xian-He
    RESEARCH, 2021, 2021
  • [28] Electronic properties of metal-organic frameworks
    Dinca, Mircea
    Bertrand, Guillaume
    Cozzolino, Anthony F.
    Narayan, Tarun C.
    Sun, Lei
    Shustova, Natalia B.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2013, 245
  • [29] Unravelling thermal stress due to thermal expansion mismatch in metal-organic frameworks for methane storage
    Wieme, Jelle
    Van Speybroeck, Veronique
    JOURNAL OF MATERIALS CHEMISTRY A, 2021, 9 (08) : 4898 - 4906
  • [30] A data driven machine learning approach for predicting and optimizing sulfur compound adsorption on metal organic frameworks
    Shayanmehr, Mohsen
    Aarabi, Sepehr
    Ghaemi, Ahad
    Hemmati, Alireza
    SCIENTIFIC REPORTS, 2025, 15 (01):