Classifying and Predicting the Thermal Expansion Properties of Metal-Organic Frameworks: A Data-Driven Approach

被引:2
|
作者
Yue, Yifei [1 ,2 ]
Mohamed, Saad Aldin [1 ]
Jiang, Jianwen [1 ,2 ]
机构
[1] Natl Univ Singapore, Dept Chem & Biomol Engn, Singapore 117576, Singapore
[2] Natl Univ Singapore, Integrat Sci & Engn Programme, Singapore 119077, Singapore
基金
新加坡国家研究基金会;
关键词
CRYSTAL-STRUCTURES; FORCE-FIELD; DESIGN; MOFS;
D O I
10.1021/acs.jcim.4c00057
中图分类号
R914 [药物化学];
学科分类号
100701 ;
摘要
Metal-organic frameworks (MOFs) are versatile materials for a wide variety of potential applications. Tunable thermal expansion properties promote the application of MOFs in thermally sensitive composite materials; however, they are currently available only in a handful of structures. Herein, we report the first data set for thermal expansion properties of 33,131 diverse MOFs generated from molecular simulations and subsequently develop machine learning (ML) models to (1) classify different thermal expansion behaviors and (2) predict volumetric thermal expansion coefficients (alpha(V)). The random forest model trained on hybrid descriptors combining geometric, chemical, and topological features exhibits the best performance among different ML models. Based on feature importance analysis, linker chemistry and topological arrangement are revealed to have a dominant impact on thermal expansion. Furthermore, we identify common building blocks in MOFs with exceptional thermal expansion properties. This data-driven study is the first of its kind, not only constructing a useful data set to facilitate future studies on this important topic but also providing design guidelines for advancing new MOFs with desired thermal expansion properties.
引用
收藏
页码:4966 / 4979
页数:14
相关论文
共 50 条
  • [1] Data-Driven Prediction of Structures of Metal-Organic Frameworks
    Yakovenko, Elizaveta I.
    Nevolin, Iurii M.
    Chasovskikh, Anatoliy A.
    Mitrofanov, Artem A.
    Korolev, Vadim V.
    JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2025, 65 (04) : 1718 - 1723
  • [2] A data-driven perspective on the colours of metal-organic frameworks
    Jablonka, Kevin Maik
    Moosavi, Seyed Mohamad
    Asgari, Mehrdad
    Ireland, Christopher
    Patiny, Luc
    Smit, Berend
    CHEMICAL SCIENCE, 2021, 12 (10) : 3587 - 3598
  • [3] Multiferroic and thermal expansion properties of metal-organic frameworks
    Ma, Yinina
    Sun, Young
    JOURNAL OF APPLIED PHYSICS, 2020, 127 (08)
  • [4] Data-Driven Design of Flexible Metal-Organic Frameworks for Gas Storage
    Lim, Yunsung
    Kim, Baekjun
    Kim, Jihan
    CHEMISTRY OF MATERIALS, 2024, 36 (11) : 5465 - 5473
  • [5] Negative Thermal Expansion Properties of Two Metal-Organic Perovskite Frameworks
    Feng Guo-Qiang
    Ma Jun
    Gui Di
    Li Zhi-Hua
    Li Wei
    CHINESE JOURNAL OF INORGANIC CHEMISTRY, 2017, 33 (06) : 932 - 938
  • [6] Elucidating negative thermal expansion in metal-organic frameworks
    Lock, Nina
    Wu, Yue
    Christensen, Mogens
    Iversen, Bo B.
    Kepert, Cameron J.
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2008, 64 : C125 - C126
  • [7] Controlling Thermal Expansion: A Metal-Organic Frameworks Route
    Balestra, Salvador R. G.
    Bueno-Perez, Rocio
    Hamad, Said
    Dubbeldam, David
    Ruiz-Salvador, A. Rabdel
    Calero, Sofia
    CHEMISTRY OF MATERIALS, 2016, 28 (22) : 8296 - 8304
  • [8] Data-Driven and Machine Learning to Screen Metal-Organic Frameworks for the Efficient Separation of Methane
    Guan, Yafang
    Huang, Xiaoshan
    Xu, Fangyi
    Wang, Wenfei
    Li, Huilin
    Gong, Lingtao
    Zhao, Yue
    Guo, Shuya
    Liang, Hong
    Qiao, Zhiwei
    NANOMATERIALS, 2024, 14 (13)
  • [9] Exceptional negative thermal expansion in isoreticular metal-organic frameworks
    Dubbeldam, David
    Walton, Krista S.
    Ellis, Donald E.
    Snurr, Randall Q.
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2007, 46 (24) : 4496 - 4499
  • [10] Data-driven efficient synthetic exploration of anionic lanthanide-based metal-organic frameworks
    Kitamura, Yu
    Nakamura, Yuiga
    Sugimoto, Kunihisa
    Yoshikawa, Hirofumi
    Tanaka, Daisuke
    CHEMICAL COMMUNICATIONS, 2022, 58 (81) : 11426 - 11429