Generalization Bounds of Nonconvex-(Strongly)-Concave Stochastic Minimax Optimization

被引:0
|
作者
Zhang, Siqi [1 ]
Hu, Yifan [2 ,3 ]
Zhang, Liang [3 ]
He, Niao [3 ]
机构
[1] Johns Hopkins Univ, Baltimore, MD 21218 USA
[2] Ecole Polytech Fed Lausanne, Lausanne, Switzerland
[3] Swiss Fed Inst Technol, Zurich, Switzerland
基金
瑞士国家科学基金会;
关键词
SAMPLE AVERAGE APPROXIMATION; COMPLEXITY; STABILITY;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper studies the generalization performance of algorithms for solving nonconvex(strongly)-concave (NC-SC / NC-C) stochastic minimax optimization measured by the stationarity of primal functions. We first establish algorithm-agnostic generalization bounds via uniform convergence between the empirical minimax problem and the population minimax problem. The sample complexities for achieving.-generalization are (O) over tilde (d kappa(2)epsilon(-2)) and (O) over tilde (d epsilon(-4)) for NC-SC and NC-C settings, respectively, where d is the dimension of the primal variable and. is the condition number. We further study the algorithm-dependent generalization bounds via stability arguments of algorithms. In particular, we introduce a novel stability notion for minimax problems and build a connection between stability and generalization. As a result, we establish algorithm-dependent generalization bounds for stochastic gradient descent ascent (SGDA) and the more general sampling-determined algorithms (SDA).
引用
收藏
页数:31
相关论文
共 50 条
  • [31] Distributed stochastic nonsmooth nonconvex optimization
    Kungurtsev, Vyacheslav
    OPERATIONS RESEARCH LETTERS, 2022, 50 (06) : 627 - 631
  • [32] Nonconvex Stochastic Optimization for Model Reduction
    Han-Fu Chen
    Hai-Tao Fang
    Journal of Global Optimization, 2002, 23 : 359 - 372
  • [33] The landscape of the proximal point method for nonconvex–nonconcave minimax optimization
    Benjamin Grimmer
    Haihao Lu
    Pratik Worah
    Vahab Mirrokni
    Mathematical Programming, 2023, 201 : 373 - 407
  • [34] Stochastic Nonconvex Optimization with Large Minibatches
    Wang, Weiran
    Srebro, Nathan
    ALGORITHMIC LEARNING THEORY, VOL 98, 2019, 98
  • [35] Nonconvex stochastic optimization for model reduction
    Chen, HF
    Fang, HT
    JOURNAL OF GLOBAL OPTIMIZATION, 2002, 23 (3-4) : 359 - 372
  • [36] What is Local Optimality in Nonconvex-Nonconcave Minimax Optimization?
    Jin, Chi
    Netrapalli, Praneeth
    Jordan, Michael, I
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 119, 2020, 119
  • [37] Stochastic Bigger Subspace Algorithms for Nonconvex Stochastic Optimization
    Yuan, Gonglin
    Zhou, Yingjie
    Wang, Liping
    Yang, Qingyuan
    IEEE ACCESS, 2021, 9 : 119818 - 119829
  • [38] DERIVATIVE-FREE ALTERNATING PROJECTION ALGORITHMS FOR GENERAL NONCONVEX-CONCAVE MINIMAX PROBLEMS
    Xu, Zi
    Wang, Ziqi
    Shen, Jingjing
    Dai, Yuhong
    SIAM JOURNAL ON OPTIMIZATION, 2024, 34 (02) : 1879 - 1908
  • [39] Generalization Bounds for Stochastic Saddle Point Problems
    Zhang, Junyu
    Hong, Mingyi
    Wang, Mengdi
    Zhang, Shuzhong
    24TH INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS (AISTATS), 2021, 130 : 568 - +
  • [40] MOCCA: Mirrored Convex/Concave Optimization for Nonconvex Composite Functions
    Barber, Rina Foygel
    Sidky, Emil Y.
    JOURNAL OF MACHINE LEARNING RESEARCH, 2016, 17