Generalization Bounds of Nonconvex-(Strongly)-Concave Stochastic Minimax Optimization

被引:0
|
作者
Zhang, Siqi [1 ]
Hu, Yifan [2 ,3 ]
Zhang, Liang [3 ]
He, Niao [3 ]
机构
[1] Johns Hopkins Univ, Baltimore, MD 21218 USA
[2] Ecole Polytech Fed Lausanne, Lausanne, Switzerland
[3] Swiss Fed Inst Technol, Zurich, Switzerland
基金
瑞士国家科学基金会;
关键词
SAMPLE AVERAGE APPROXIMATION; COMPLEXITY; STABILITY;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper studies the generalization performance of algorithms for solving nonconvex(strongly)-concave (NC-SC / NC-C) stochastic minimax optimization measured by the stationarity of primal functions. We first establish algorithm-agnostic generalization bounds via uniform convergence between the empirical minimax problem and the population minimax problem. The sample complexities for achieving.-generalization are (O) over tilde (d kappa(2)epsilon(-2)) and (O) over tilde (d epsilon(-4)) for NC-SC and NC-C settings, respectively, where d is the dimension of the primal variable and. is the condition number. We further study the algorithm-dependent generalization bounds via stability arguments of algorithms. In particular, we introduce a novel stability notion for minimax problems and build a connection between stability and generalization. As a result, we establish algorithm-dependent generalization bounds for stochastic gradient descent ascent (SGDA) and the more general sampling-determined algorithms (SDA).
引用
收藏
页数:31
相关论文
共 50 条
  • [21] Understanding generalization error of SGD in nonconvex optimization
    Zhou, Yi
    Liang, Yingbin
    Zhang, Huishuai
    MACHINE LEARNING, 2022, 111 (01) : 345 - 375
  • [22] Understanding generalization error of SGD in nonconvex optimization
    Yi Zhou
    Yingbin Liang
    Huishuai Zhang
    Machine Learning, 2022, 111 : 345 - 375
  • [23] A GENERALIZATION OF THE CONSTRUCTION OF TEST PROBLEMS FOR NONCONVEX OPTIMIZATION
    MOSHIRVAZIRI, K
    JOURNAL OF GLOBAL OPTIMIZATION, 1994, 5 (01) : 21 - 34
  • [24] Generalization of the construction of test problems for nonconvex optimization
    Moshirvaziri, Khosrow
    Journal of Global Optimization, 1994, 5 (01)
  • [25] Improved Algorithms for Convex-Concave Minimax Optimization
    Wang, Yuanhao
    Li, Jian
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 33, NEURIPS 2020, 2020, 33
  • [26] Stability and Generalization of Stochastic Gradient Methods for Minimax Problems
    Lei, Yunwen
    Yang, Zhenhuan
    Yang, Tianbao
    Ying, Yiming
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 139, 2021, 139
  • [27] Asymptotic minimax bounds for stochastic deconvolution over groups
    Koo, Ja-Yong
    Kim, Peter T.
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2008, 54 (01) : 289 - 298
  • [28] Duality gaps in nonconvex stochastic optimization
    Darinka Dentcheva
    Werner Römisch
    Mathematical Programming, 2004, 101 : 515 - 535
  • [29] Stochastic Variance Reduction for Nonconvex Optimization
    Reddi, Sashank J.
    Hefny, Ahmed
    Sra, Suvrit
    Poczos, Barnabas
    Smola, Alex
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 48, 2016, 48
  • [30] Duality gaps in nonconvex stochastic optimization
    Dentcheva, D
    Römisch, W
    MATHEMATICAL PROGRAMMING, 2004, 101 (03) : 515 - 535