Category-Extensible Out-of-Distribution Detection via Hierarchical Context Descriptions

被引:0
|
作者
Liu, Kai [1 ,2 ]
Fu, Zhihang [2 ]
Chen, Chao [2 ]
Jin, Sheng [2 ]
Chen, Ze [2 ]
Tao, Mingyuan [2 ]
Jiang, Rongxin [1 ]
Ye, Jieping [2 ]
机构
[1] Zhejiang Univ, Hangzhou, Peoples R China
[2] Alibaba Cloud, Hangzhou, Peoples R China
基金
国家重点研发计划;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The key to OOD detection has two aspects: generalized feature representation and precise category description. Recently, vision-language models such as CLIP provide significant advances in both two issues, but constructing precise category descriptions is still in its infancy due to the absence of unseen categories. This work introduces two hierarchical contexts, namely perceptual context and spurious context, to carefully describe the precise category boundary through automatic prompt tuning. Specifically, perceptual contexts perceive the inter-category difference (e.g., cats vs apples) for current classification tasks, while spurious contexts further identify spurious (similar but exactly not) OOD samples for every single category (e.g., cats vs panthers, apples vs peaches). The two contexts hierarchically construct the precise description for a certain category, which is, first roughly classifying a sample to the predicted category and then delicately identifying whether it is truly an ID sample or actually OOD. Moreover, the precise descriptions for those categories within the vision-language framework present a novel application: CATegory-EXtensible OOD detection (CATEX). One can efficiently extend the set of recognizable categories by simply merging the hierarchical contexts learned under different sub-task settings. And extensive experiments are conducted to demonstrate CATEX's effectiveness, robustness, and category-extensibility. For instance, CATEX consistently surpasses the rivals by a large margin with several protocols on the challenging ImageNet-1K dataset. In addition, we offer new insights on how to efficiently scale up the prompt engineering in vision-language models to recognize thousands of object categories, as well as how to incorporate large language models (like GPT-3) to boost zero-shot applications.
引用
收藏
页数:21
相关论文
共 50 条
  • [31] Out-of-Distribution Detection Using Outlier Detection Methods
    Diers, Jan
    Pigorsch, Christian
    IMAGE ANALYSIS AND PROCESSING, ICIAP 2022, PT III, 2022, 13233 : 15 - 26
  • [32] LoCoOp: Few-Shot Out-of-Distribution Detection via Prompt Learning
    Miyai, Atsuyuki
    Yu, Qing
    Irie, Go
    Aizawa, Kiyoharu
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [33] On the Impact of Spurious Correlation for Out-of-Distribution Detection
    Ming, Yifei
    Yin, Hang
    Li, Yixuan
    THIRTY-SIXTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FOURTH CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE / TWELVETH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2022, : 10051 - 10059
  • [34] Provable Guarantees for Understanding Out-of-Distribution Detection
    Morteza, Peyman
    Li, Yixuan
    THIRTY-SIXTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FOURTH CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE / TWELVETH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2022, : 7831 - 7840
  • [35] Your Out-of-Distribution Detection Method is Not Robust!
    Azizmalayeri, Mohammad
    Moakhar, Arshia Soltani
    Zarei, Arman
    Zohrabi, Reihaneh
    Manzuri, Mohammad Taghi
    Rohban, Mohammad Hossein
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35 (NEURIPS 2022), 2022,
  • [36] Learning to Augment Distributions for Out-of-Distribution Detection
    Wang, Qizhou
    Fang, Zhen
    Zhang, Yonggang
    Liu, Feng
    Li, Yixuan
    Han, Bo
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [37] Out-of-Distribution Generalization via Risk Extrapolation
    Krueger, David
    Caballero, Ethan
    Jacobsen, Joern-Henrik
    Zhang, Amy
    Binas, Jonathan
    Zhang, Dinghuai
    Le Priol, Remi
    Courville, Aaron
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 139, 2021, 139
  • [38] Interpretable Latent Space for Meteorological Out-of-Distribution Detection via Weak Supervision
    Das, Suman
    Yuhas, Michael
    Koh, Rachel
    Easwaran, Arvind
    ACM TRANSACTIONS ON CYBER-PHYSICAL SYSTEMS, 2024, 8 (02) : 1 - 26
  • [39] Latent Transformer Models for out-of-distribution detection
    Graham, Mark S.
    Tudosiu, Petru-Daniel
    Wright, Paul
    Pinaya, Walter Hugo Lopez
    Teikari, Petteri
    Patel, Ashay
    U-King-Im, Jean-Marie
    Mah, Yee H.
    Teo, James T.
    Jager, Hans Rolf
    Werring, David
    Rees, Geraint
    Nachev, Parashkev
    Ourselin, Sebastien
    Cardoso, M. Jorge
    MEDICAL IMAGE ANALYSIS, 2023, 90
  • [40] CONTINUAL LEARNING FOR OUT-OF-DISTRIBUTION PEDESTRIAN DETECTION
    Molahasani, Mahdiyar
    Etemad, Ali
    Greenspan, Michael
    2023 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2023, : 2685 - 2689