Category-Extensible Out-of-Distribution Detection via Hierarchical Context Descriptions

被引:0
|
作者
Liu, Kai [1 ,2 ]
Fu, Zhihang [2 ]
Chen, Chao [2 ]
Jin, Sheng [2 ]
Chen, Ze [2 ]
Tao, Mingyuan [2 ]
Jiang, Rongxin [1 ]
Ye, Jieping [2 ]
机构
[1] Zhejiang Univ, Hangzhou, Peoples R China
[2] Alibaba Cloud, Hangzhou, Peoples R China
基金
国家重点研发计划;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The key to OOD detection has two aspects: generalized feature representation and precise category description. Recently, vision-language models such as CLIP provide significant advances in both two issues, but constructing precise category descriptions is still in its infancy due to the absence of unseen categories. This work introduces two hierarchical contexts, namely perceptual context and spurious context, to carefully describe the precise category boundary through automatic prompt tuning. Specifically, perceptual contexts perceive the inter-category difference (e.g., cats vs apples) for current classification tasks, while spurious contexts further identify spurious (similar but exactly not) OOD samples for every single category (e.g., cats vs panthers, apples vs peaches). The two contexts hierarchically construct the precise description for a certain category, which is, first roughly classifying a sample to the predicted category and then delicately identifying whether it is truly an ID sample or actually OOD. Moreover, the precise descriptions for those categories within the vision-language framework present a novel application: CATegory-EXtensible OOD detection (CATEX). One can efficiently extend the set of recognizable categories by simply merging the hierarchical contexts learned under different sub-task settings. And extensive experiments are conducted to demonstrate CATEX's effectiveness, robustness, and category-extensibility. For instance, CATEX consistently surpasses the rivals by a large margin with several protocols on the challenging ImageNet-1K dataset. In addition, we offer new insights on how to efficiently scale up the prompt engineering in vision-language models to recognize thousands of object categories, as well as how to incorporate large language models (like GPT-3) to boost zero-shot applications.
引用
收藏
页数:21
相关论文
共 50 条
  • [21] Out-of-distribution Detection via Frequency-regularized Generative Models
    Cai, Mu
    Li, Yixuan
    2023 IEEE/CVF WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV), 2023, : 5510 - 5519
  • [22] Likelihood Ratios for Out-of-Distribution Detection
    Ren, Jie
    Liu, Peter J.
    Fertig, Emily
    Snoek, Jasper
    Poplin, Ryan
    DePristo, Mark A.
    Dillon, Joshua V.
    Lakshminarayanan, Balaji
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 32 (NIPS 2019), 2019, 32
  • [23] Semantically Coherent Out-of-Distribution Detection
    Yang, Jingkang
    Wang, Haoqi
    Feng, Litong
    Yan, Xiaopeng
    Zheng, Huabin
    Zhang, Wayne
    Liub, Ziwei
    2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 8281 - 8289
  • [24] Generalized Out-of-Distribution Detection: A Survey
    Yang, Jingkang
    Zhou, Kaiyang
    Li, Yixuan
    Liu, Ziwei
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 2024, 132 (12) : 5635 - 5662
  • [25] Unsupervised evaluation for out-of-distribution detection
    Zhang, Yuhang
    Hu, Jiani
    Wen, Dongchao
    Deng, Weihong
    PATTERN RECOGNITION, 2025, 160
  • [26] Out-of-Distribution Detection via Uncertainty Learning for Robust Glaucoma Prediction
    Rashidisabet, Homa
    Chan, Robison Vernon Paul
    Vajaranant, Thasarat Sutabutr
    Yi, Darvin
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2024, 65 (07)
  • [27] WDiscOOD: Out-of-Distribution Detection via Whitened Linear Discriminant Analysis
    Chen, Yiye
    Lin, Yunzhi
    Xu, Ruinian
    Vela, Patricio A.
    2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION, ICCV, 2023, : 5275 - 5284
  • [28] Diversified Outlier Exposure for Out-of-Distribution Detection via Informative Extrapolation
    Zhu, Jianing
    Yu, Geng
    Yao, Jiangchao
    Liu, Tongliang
    Niu, Gang
    Sugiyama, Masashi
    Han, Bo
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [29] In or Out? Fixing ImageNet Out-of-Distribution Detection Evaluation
    Bitterwolf, Julian
    Mueller, Maximilian
    Hein, Matthias
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 202, 2023, 202
  • [30] Towards In-Distribution Compatible Out-of-Distribution Detection
    Wu, Boxi
    Jiang, Jie
    Ren, Haidong
    Du, Zifan
    Wang, Wenxiao
    Li, Zhifeng
    Cai, Deng
    He, Xiaofei
    Lin, Binbin
    Liu, Wei
    THIRTY-SEVENTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 37 NO 9, 2023, : 10333 - 10341