Explaining Reinforcement Learning with Shapley Values

被引:0
|
作者
Beechey, Daniel [1 ]
Smith, Thomas M. S. [1 ]
Simsek, Ozgur [1 ]
机构
[1] Univ Bath, Dept Comp Sci, Bath, Avon, England
基金
英国工程与自然科学研究理事会;
关键词
CLASSIFICATIONS;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
For reinforcement learning systems to be widely adopted, their users must understand and trust them. We present a theoretical analysis of explaining reinforcement learning using Shapley values, following a principled approach from game theory for identifying the contribution of individual players to the outcome of a cooperative game. We call this general framework Shapley Values for Explaining Reinforcement Learning (SVERL). Our analysis exposes the limitations of earlier uses of Shapley values in reinforcement learning. We then develop an approach that uses Shapley values to explain agent performance. In a variety of domains, SVERL produces meaningful explanations that match and supplement human intuition.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Shapley Chains: Extending Shapley Values to Classifier Chains
    Ayad, Celia Wafa
    Bonnier, Thomas
    Bosch, Benjamin
    Read, Jesse
    DISCOVERY SCIENCE (DS 2022), 2022, 13601 : 541 - 555
  • [32] P-Shapley: Shapley Values on Probabilistic Classifiers
    Xia, Haocheng
    Li, Xiang
    Pang, Junyuan
    Liu, Jinfei
    Ren, Kui
    Xiong, Li
    PROCEEDINGS OF THE VLDB ENDOWMENT, 2024, 17 (07): : 1737 - 1750
  • [33] Shapley-Optimized Reinforcement Learning for Human-Machine Collaboration Policy
    Zhang, Jie
    Niu, Yiqun
    He, Wei
    Jin, Cheng
    Wang, Chongjun
    DATABASE SYSTEMS FOR ADVANCED APPLICATIONS, DASFAA 2024, PT 2, 2025, 14851 : 291 - 300
  • [34] Computing Shapley Values in the Plane
    Sergio Cabello
    Timothy M. Chan
    Discrete & Computational Geometry, 2022, 67 : 843 - 881
  • [35] ON AXIOMATIZATIONS OF THE WEIGHTED SHAPLEY VALUES
    NOWAK, AS
    RADZIK, T
    GAMES AND ECONOMIC BEHAVIOR, 1995, 8 (02) : 389 - 405
  • [36] On the failings of Shapley values for explainability
    Huang, Xuanxiang
    Marques-Silva, Joao
    INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 2024, 171
  • [37] Computing Shapley Values in the Plane
    Cabello, Sergio
    Chan, Timothy M.
    DISCRETE & COMPUTATIONAL GEOMETRY, 2022, 67 (03) : 843 - 881
  • [38] Explaining and Exploring Ethical and Trustworthy AI in the Context of Reinforcement Learning
    McCullough, Theodore C.
    IEEE Transactions on Technology and Society, 2024, 5 (02): : 198 - 204
  • [39] Exploring the Reliability of SHAP Values in Reinforcement Learning
    Engelhardt, Raphael C.
    Lange, Moritz
    Wiskott, Laurenz
    Konen, Wolfgang
    EXPLAINABLE ARTIFICIAL INTELLIGENCE, PT III, XAI 2024, 2024, 2155 : 165 - 184
  • [40] Moody Learners - Explaining Competitive Behaviour of Reinforcement Learning Agents
    Barros, Pablo
    Tanevska, Ana
    Cruz, Francisco
    Sciutti, Alessandra
    10TH IEEE INTERNATIONAL CONFERENCE ON DEVELOPMENT AND LEARNING AND EPIGENETIC ROBOTICS (ICDL-EPIROB 2020), 2020,