Explaining Reinforcement Learning with Shapley Values

被引:0
|
作者
Beechey, Daniel [1 ]
Smith, Thomas M. S. [1 ]
Simsek, Ozgur [1 ]
机构
[1] Univ Bath, Dept Comp Sci, Bath, Avon, England
基金
英国工程与自然科学研究理事会;
关键词
CLASSIFICATIONS;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
For reinforcement learning systems to be widely adopted, their users must understand and trust them. We present a theoretical analysis of explaining reinforcement learning using Shapley values, following a principled approach from game theory for identifying the contribution of individual players to the outcome of a cooperative game. We call this general framework Shapley Values for Explaining Reinforcement Learning (SVERL). Our analysis exposes the limitations of earlier uses of Shapley values in reinforcement learning. We then develop an approach that uses Shapley values to explain agent performance. In a variety of domains, SVERL produces meaningful explanations that match and supplement human intuition.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] WindowSHAP: An efficient framework for explaining time-series classifiers based on Shapley values
    Nayebi, Amin
    Tipirneni, Sindhu
    Reddy, Chandan K.
    Foreman, Brandon
    Subbian, Vignesh
    JOURNAL OF BIOMEDICAL INFORMATICS, 2023, 144
  • [22] Explaining predictive models using Shapley values and non-parametric vine copulas
    Aas, Kjersti
    Nagler, Thomas
    Jullum, Martin
    Loland, Anders
    DEPENDENCE MODELING, 2021, 9 (01): : 62 - 81
  • [23] Shapley Counterfactual Credits for Multi-Agent Reinforcement Learning
    Li, Jiahui
    Kuang, Kun
    Wang, Baoxiang
    Liu, Furui
    Chen, Long
    Wu, Fei
    Xiao, Jun
    KDD '21: PROCEEDINGS OF THE 27TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, 2021, : 934 - 942
  • [24] EDGE: Explaining Deep Reinforcement Learning Policies
    Guo, Wenbo
    Wu, Xian
    Khan, Usmann
    Xing, Xinyu
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021, 34
  • [25] EXPLAINING DEEP LEARNING MODELS FOR SPOOFING AND DEEPFAKE DETECTION WITH SHAPLEY ADDITIVE EXPLANATIONS
    Ge, Wanying
    Patino, Jose
    Todisco, Massimiliano
    Evans, Nicholas
    2022 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2022, : 6387 - 6391
  • [26] Explaining Deep Q-Learning Experience Replay with SHapley Additive exPlanations
    Sullivan, Robert S.
    Longo, Luca
    MACHINE LEARNING AND KNOWLEDGE EXTRACTION, 2023, 5 (04): : 1433 - 1455
  • [27] ON WEIGHTED SHAPLEY VALUES
    KALAI, E
    SAMET, D
    INTERNATIONAL JOURNAL OF GAME THEORY, 1987, 16 (03) : 205 - 222
  • [28] Explaining Reinforcement Learning to Mere Mortals: An Empirical Study
    Anderson, Andrew
    Dodge, Jonathan
    Sadarangani, Amrita
    Juozapaitis, Zoe
    Newman, Evan
    Irvine, Jed
    Chattopadhyay, Souti
    Fern, Alan
    Burnett, Margaret
    PROCEEDINGS OF THE TWENTY-EIGHTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2019, : 1328 - 1334
  • [29] ProtoX: Explaining a Reinforcement Learning Agent via Prototyping
    Ragodos, Ronilo J.
    Wang, Tong
    Lin, Qihang
    Zhou, Xun
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35 (NEURIPS 2022), 2022,
  • [30] EXACT SHAPLEY VALUES FOR EXPLAINING COMPLEX MACHINE LEARNING BASED MOLECULAR TESTS OF CHECKPOINT INHIBITORS: POTENTIAL UTILITY FOR PATIENTS, PHYSICIANS, AND TRANSLATIONAL RESEARCH
    Roder, Heinrich
    Net, Lelia
    Roder, Joanna
    Campbell, Thomas
    McCleland, Mark
    Zou, Wei
    Srivastava, Minu
    Shames, David
    Maguire, Laura
    Georgantas, Robert, III
    JOURNAL FOR IMMUNOTHERAPY OF CANCER, 2021, 9 : A870 - A871