Dense Multiagent Reinforcement Learning Aided Multi-UAV Information Coverage for Vehicular Networks

被引:5
|
作者
Fu, Hang [1 ,2 ]
Wang, Jingjing [1 ,2 ]
Chen, Jianrui [1 ,3 ]
Ren, Pengfei [1 ]
Zhang, Zheng [1 ]
Zhao, Guodong [4 ]
机构
[1] Beihang Univ, Sch Cyber Sci & Technol, Beijing 100191, Peoples R China
[2] Xidian Univ, State Key Lab Integrated Serv Networks, Xian 710071, Peoples R China
[3] Peng Cheng Lab, Shenzhen 518000, Peoples R China
[4] Beihang Univ, Sch Aeronaut Sci & Engn, Beijing 100191, Peoples R China
来源
IEEE INTERNET OF THINGS JOURNAL | 2024年 / 11卷 / 12期
关键词
Heuristic algorithms; Autonomous aerial vehicles; Vehicle dynamics; Training; Internet of Things; Energy consumption; Decision making; Communication coverage; dense reinforcement learning; distributed multiunmanned aerial vehicle (UAV); multiagent reinforcement learning (MARL); vehicular networks; RESOURCE-ALLOCATION; COMMUNICATION; OPTIMIZATION; ALTITUDE; INTERNET;
D O I
10.1109/JIOT.2024.3367005
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
With the rapid development of wireless communication networks, UAVs serving as base stations are increasingly being applied in various scenarios which not only include edge computation and task offloading, but also involve emergency communication, vehicular network enhancement, etc. In order to enhance the utility of UAV base stations' allocation and deployment, a series of algorithms have been proposed, utilizing heuristic methods, learning-based algorithms, or optimization approaches. However, it is intractable for current algorithms to handle the exponential computation increment with UAV base stations increasing, and complicated application scenarios with high dynamic demands. To solve the above issues, we formulate a decision problem with a long sequence to optimize the deployment of multi-UAV base stations for maximizing vehicular networks' communication coverage ratio, which needs to be subject to co-constraints consisting of moving velocity, energy consumption, and communication coverage radius. To solve this optimization problem, we creatively propose an algorithm named dense multiagent reinforcement learning (DMARL), which is under the dual-layer nested decision-making framework, centralized training with decentralized deployment, and accelerates training by only collecting critical states into the dense sampling buffer. To prove our proposed algorithm's effectiveness and generalization ability, we conduct experimental simulations in scenarios with different scales. Corresponding results have been provided to verify our algorithm's superiority in training efficiency and performance metrics, including coverage ratio and energy consumption, compared with other algorithms.
引用
收藏
页码:21274 / 21286
页数:13
相关论文
共 50 条
  • [31] Multi-UAV Dynamic Wireless Networking With Deep Reinforcement Learning
    Wang, Qiang
    Zhang, Wenqi
    Liu, Yuanwei
    Liu, Ying
    IEEE COMMUNICATIONS LETTERS, 2019, 23 (12) : 2243 - 2246
  • [32] Multi-UAV Conflict Resolution with Graph Convolutional Reinforcement Learning
    Isufaj, Ralvi
    Omeri, Marsel
    Piera, Miquel Angel
    APPLIED SCIENCES-BASEL, 2022, 12 (02):
  • [33] Multi-Agent Reinforcement Learning Aided Resources Allocation Method in Vehicular Networks
    Ji, Yuxin
    Zhang, Xixi
    Wang, Yu
    Gacanin, Haris
    Sari, Hikmet
    Adachi, Fumiyuki
    Gui, Guan
    2022 IEEE 96TH VEHICULAR TECHNOLOGY CONFERENCE (VTC2022-FALL), 2022,
  • [34] Cooperative coverage reconnaissance of Multi-uav
    Wang, Tao
    Li, Meng
    Zhang, Ming-yi
    PROCEEDINGS OF 2020 IEEE 5TH INFORMATION TECHNOLOGY AND MECHATRONICS ENGINEERING CONFERENCE (ITOEC 2020), 2020, : 1647 - 1651
  • [35] Deep Reinforcement Learning Based Energy Efficient Multi-UAV Data Collection for IoT Networks
    Khodaparast, Seyed Saeed
    Lu, Xiao
    Wang, Ping
    Uyen Trang Nguyen
    IEEE OPEN JOURNAL OF VEHICULAR TECHNOLOGY, 2021, 2 : 249 - 260
  • [36] Multi-agent reinforcement learning for edge information sharing in vehicular networks
    Ruyan Wang
    Xue Jiang
    Yujie Zhou
    Zhidu Li
    Dapeng Wu
    Tong Tang
    Alexander Fedotov
    Vladimir Badenko
    Digital Communications and Networks, 2022, 8 (03) : 267 - 277
  • [37] Multi-agent reinforcement learning for edge information sharing in vehicular networks
    Wang, Ruyan
    Jiang, Xue
    Zhou, Yujie
    Li, Zhidu
    Wu, Dapeng
    Tang, Tong
    Fedotov, Alexander
    Badenko, Vladimir
    DIGITAL COMMUNICATIONS AND NETWORKS, 2022, 8 (03) : 267 - 277
  • [38] Machine Learning Aided Trajectory Design and Power Control of Multi-UAV
    Liu, Xiao
    Liu, Yuanwei
    Chen, Yue
    Wang, Luhan
    Lu, Zhaoming
    2019 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM), 2019,
  • [39] A Method of Multi-UAV Cooperative Task Assignment Based on Reinforcement Learning
    Zhao, Xiaohu
    Jiang, Hanli
    An, Chenyang
    Wu, Ruocheng
    Guo, Yijun
    Yang, Daquan
    MOBILE INFORMATION SYSTEMS, 2022, 2022
  • [40] Multiagent Deep Reinforcement Learning for Wireless-Powered UAV Networks
    Oubbati, Omar Sami
    Lakas, Abderrahmane
    Guizani, Mohsen
    IEEE INTERNET OF THINGS JOURNAL, 2022, 9 (17): : 16044 - 16059