Dense Multiagent Reinforcement Learning Aided Multi-UAV Information Coverage for Vehicular Networks

被引:5
|
作者
Fu, Hang [1 ,2 ]
Wang, Jingjing [1 ,2 ]
Chen, Jianrui [1 ,3 ]
Ren, Pengfei [1 ]
Zhang, Zheng [1 ]
Zhao, Guodong [4 ]
机构
[1] Beihang Univ, Sch Cyber Sci & Technol, Beijing 100191, Peoples R China
[2] Xidian Univ, State Key Lab Integrated Serv Networks, Xian 710071, Peoples R China
[3] Peng Cheng Lab, Shenzhen 518000, Peoples R China
[4] Beihang Univ, Sch Aeronaut Sci & Engn, Beijing 100191, Peoples R China
来源
IEEE INTERNET OF THINGS JOURNAL | 2024年 / 11卷 / 12期
关键词
Heuristic algorithms; Autonomous aerial vehicles; Vehicle dynamics; Training; Internet of Things; Energy consumption; Decision making; Communication coverage; dense reinforcement learning; distributed multiunmanned aerial vehicle (UAV); multiagent reinforcement learning (MARL); vehicular networks; RESOURCE-ALLOCATION; COMMUNICATION; OPTIMIZATION; ALTITUDE; INTERNET;
D O I
10.1109/JIOT.2024.3367005
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
With the rapid development of wireless communication networks, UAVs serving as base stations are increasingly being applied in various scenarios which not only include edge computation and task offloading, but also involve emergency communication, vehicular network enhancement, etc. In order to enhance the utility of UAV base stations' allocation and deployment, a series of algorithms have been proposed, utilizing heuristic methods, learning-based algorithms, or optimization approaches. However, it is intractable for current algorithms to handle the exponential computation increment with UAV base stations increasing, and complicated application scenarios with high dynamic demands. To solve the above issues, we formulate a decision problem with a long sequence to optimize the deployment of multi-UAV base stations for maximizing vehicular networks' communication coverage ratio, which needs to be subject to co-constraints consisting of moving velocity, energy consumption, and communication coverage radius. To solve this optimization problem, we creatively propose an algorithm named dense multiagent reinforcement learning (DMARL), which is under the dual-layer nested decision-making framework, centralized training with decentralized deployment, and accelerates training by only collecting critical states into the dense sampling buffer. To prove our proposed algorithm's effectiveness and generalization ability, we conduct experimental simulations in scenarios with different scales. Corresponding results have been provided to verify our algorithm's superiority in training efficiency and performance metrics, including coverage ratio and energy consumption, compared with other algorithms.
引用
收藏
页码:21274 / 21286
页数:13
相关论文
共 50 条
  • [11] Rechargeable Multi-UAV Aided Seamless Coverage for QoS-Guaranteed IoT Networks
    Li, Xiaowei
    Yao, Haipeng
    Wang, Jingjing
    Wu, Sheng
    Jiang, Chunxiao
    Qian, Yi
    IEEE INTERNET OF THINGS JOURNAL, 2019, 6 (06) : 10902 - 10914
  • [12] Cooperative Multiagent Deep Reinforcement Learning for Reliable Surveillance via Autonomous Multi-UAV Control
    Yun, Won Joon
    Park, Soohyun
    Kim, Joongheon
    Shin, MyungJae
    Jung, Soyi
    Mohaisen, David A.
    Kim, Jae-Hyun
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2022, 18 (10) : 7086 - 7096
  • [13] Multi-UAV Assisted Network Coverage Optimization for Rescue Operations using Reinforcement Learning
    Oubbati, Omar Sami
    Badis, Hakim
    Rachedi, Abderrezak
    Lakas, Abderrahmane
    Lorenz, Pascal
    2023 IEEE 20TH CONSUMER COMMUNICATIONS & NETWORKING CONFERENCE, CCNC, 2023,
  • [14] Continual Meta-Reinforcement Learning for UAV-Aided Vehicular Wireless Networks
    Marini, Riccardo
    Park, Sangwoo
    Simeone, Osvaldo
    Buratti, Chiara
    ICC 2023-IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS, 2023, : 5664 - 5669
  • [15] Multiagent Reinforcement Learning in Controlling Offloading Ratio and Trajectory for Multi-UAV Mobile-Edge Computing
    Lee, Wonseok
    Kim, Taejoon
    IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (02) : 3417 - 3429
  • [16] A Deep Reinforcement Learning Method for Collision Avoidance with Dense Speed-Constrained Multi-UAV
    Han, Jiale
    Zhu, Yi
    Yang, Jian
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2025, 10 (03): : 2152 - 2159
  • [17] Multi-UAV Collaborative Detection Based on Reinforcement Learning
    Hao, Yuanhui
    Guo, Chubing
    Ke, Liangjun
    ADVANCES IN SWARM INTELLIGENCE, PT I, ICSI 2024, 2024, 14788 : 463 - 474
  • [18] Dynamic Attention Network for Multi-UAV Reinforcement Learning
    Xu, Dongsheng
    Wu, Shang
    INTERNATIONAL CONFERENCE ON ALGORITHMS, HIGH PERFORMANCE COMPUTING, AND ARTIFICIAL INTELLIGENCE (AHPCAI 2021), 2021, 12156
  • [19] Multi-Agent Deep Reinforcement Learning for Full-Duplex Multi-UAV Networks
    Dai, Chen
    Zhu, Kun
    Hossain, Ekram
    2022 IEEE WIRELESS COMMUNICATIONS AND NETWORKING CONFERENCE (WCNC), 2022, : 2232 - 2237
  • [20] Age-of-Information based Multi-UAV Trajectories Using Deep Reinforcement Learning
    Kaur, Amanjot
    Jha, Shashi Shekhar
    IETE TECHNICAL REVIEW, 2024, 41 (06) : 659 - 671