Dense Multiagent Reinforcement Learning Aided Multi-UAV Information Coverage for Vehicular Networks

被引:5
|
作者
Fu, Hang [1 ,2 ]
Wang, Jingjing [1 ,2 ]
Chen, Jianrui [1 ,3 ]
Ren, Pengfei [1 ]
Zhang, Zheng [1 ]
Zhao, Guodong [4 ]
机构
[1] Beihang Univ, Sch Cyber Sci & Technol, Beijing 100191, Peoples R China
[2] Xidian Univ, State Key Lab Integrated Serv Networks, Xian 710071, Peoples R China
[3] Peng Cheng Lab, Shenzhen 518000, Peoples R China
[4] Beihang Univ, Sch Aeronaut Sci & Engn, Beijing 100191, Peoples R China
来源
IEEE INTERNET OF THINGS JOURNAL | 2024年 / 11卷 / 12期
关键词
Heuristic algorithms; Autonomous aerial vehicles; Vehicle dynamics; Training; Internet of Things; Energy consumption; Decision making; Communication coverage; dense reinforcement learning; distributed multiunmanned aerial vehicle (UAV); multiagent reinforcement learning (MARL); vehicular networks; RESOURCE-ALLOCATION; COMMUNICATION; OPTIMIZATION; ALTITUDE; INTERNET;
D O I
10.1109/JIOT.2024.3367005
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
With the rapid development of wireless communication networks, UAVs serving as base stations are increasingly being applied in various scenarios which not only include edge computation and task offloading, but also involve emergency communication, vehicular network enhancement, etc. In order to enhance the utility of UAV base stations' allocation and deployment, a series of algorithms have been proposed, utilizing heuristic methods, learning-based algorithms, or optimization approaches. However, it is intractable for current algorithms to handle the exponential computation increment with UAV base stations increasing, and complicated application scenarios with high dynamic demands. To solve the above issues, we formulate a decision problem with a long sequence to optimize the deployment of multi-UAV base stations for maximizing vehicular networks' communication coverage ratio, which needs to be subject to co-constraints consisting of moving velocity, energy consumption, and communication coverage radius. To solve this optimization problem, we creatively propose an algorithm named dense multiagent reinforcement learning (DMARL), which is under the dual-layer nested decision-making framework, centralized training with decentralized deployment, and accelerates training by only collecting critical states into the dense sampling buffer. To prove our proposed algorithm's effectiveness and generalization ability, we conduct experimental simulations in scenarios with different scales. Corresponding results have been provided to verify our algorithm's superiority in training efficiency and performance metrics, including coverage ratio and energy consumption, compared with other algorithms.
引用
收藏
页码:21274 / 21286
页数:13
相关论文
共 50 条
  • [1] A Multiagent Deep Reinforcement Learning Approach for Multi-UAV Cooperative Search in Multilayered Aerial Computing Networks
    Wu, Jiaqi
    Luo, Jingjing
    Jiang, Changkun
    Gao, Lin
    IEEE INTERNET OF THINGS JOURNAL, 2025, 12 (05): : 5807 - 5821
  • [2] PPOSWC: Deep Reinforcement Learning Recharging Scheduling for Effective Service in Multi-UAV Aided Networks
    Osrhir, Youssef
    El Khamlichi, Btissam
    El Fallah-Seghrouchni, Amal
    2024 IEEE WIRELESS COMMUNICATIONS AND NETWORKING CONFERENCE, WCNC 2024, 2024,
  • [3] Resource Allocation in High Dynamic Multi-UAV Networks for Coverage Continuity: A Reinforcement Learning Approach
    Zhou, Chengyi
    Li, Jiandong
    Liu, Junyu
    Sheng, Min
    Zhao, Nan
    2023 INTERNATIONAL CONFERENCE ON FUTURE COMMUNICATIONS AND NETWORKS, FCN, 2023,
  • [4] Maximizing UAV Coverage in Maritime Wireless Networks: A Multiagent Reinforcement Learning Approach
    Wu, Qianqian
    Liu, Qiang
    Wu, Zefan
    Zhang, Jiye
    FUTURE INTERNET, 2023, 15 (11)
  • [5] Collaborative Decision-Making Method for Multi-UAV Based on Multiagent Reinforcement Learning
    Li, Shaowei
    Jia, Yuhong
    Yang, Fan
    Qin, Qingyang
    Gao, Hui
    Zhou, Yaoming
    IEEE ACCESS, 2022, 10 : 91385 - 91396
  • [6] Multi-UAV Navigation for Partially Observable Communication Coverage by Graph Reinforcement Learning
    Ye, Zhenhui
    Wang, Ke
    Chen, Yining
    Jiang, Xiaohong
    Song, Guanghua
    IEEE TRANSACTIONS ON MOBILE COMPUTING, 2023, 22 (07) : 4056 - 4069
  • [7] Transformer-Based Reinforcement Learning for Scalable Multi-UAV Area Coverage
    Chen, Dezhi
    Qi, Qi
    Fu, Qianlong
    Wang, Jingyu
    Liao, Jianxin
    Han, Zhu
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2024, 25 (08) : 10062 - 10077
  • [8] Energy optimization and age of information enhancement in multi-UAV networks using deep reinforcement learning
    Kim, Jeena
    Park, Seunghyun
    Park, Hyunhee
    ELECTRONICS LETTERS, 2024, 60 (20)
  • [9] Multi-UAV Reinforcement Learning for Data Collection in Cellular MIMO Networks
    Diaz-Vilor, Carles
    Abdelhady, Amr M.
    Eltawil, Ahmed M.
    Jafarkhani, Hamid
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2024, 23 (10) : 15462 - 15476
  • [10] Mean-Field-Aided Multiagent Reinforcement Learning for Resource Allocation in Vehicular Networks
    Zhang, Hengxi
    Lu, Chengyue
    Tang, Huaze
    Wei, Xiaoli
    Liang, Le
    Cheng, Ling
    Ding, Wenbo
    Han, Zhu
    IEEE INTERNET OF THINGS JOURNAL, 2023, 10 (03) : 2667 - 2679