Optimized Interfaces for PBI-Based High-Temperature Direct Ethanol Fuel Cells

被引:0
|
作者
da Silva, Rodrigo Pires [1 ]
de Matos, Bruno Ribeiro [1 ]
Fonseca, Fabio Coral [1 ]
Santiago, Elisabete Inacio [1 ]
机构
[1] Inst Pesquisas Energet & Nucl IPEN, BR-05008000 Sao Paulo, Brazil
来源
ACS APPLIED ENERGY MATERIALS | 2024年 / 7卷 / 18期
基金
巴西圣保罗研究基金会;
关键词
direct ethanol fuel cell; polybenzimidazole; composite membranes; binder; triple-phase boundary; interfaces; COMPOSITE MEMBRANES; PROTON CONDUCTION; DIRECT METHANOL; POLYBENZIMIDAZOLE; ELECTROLYTE; PERFORMANCE; IONOMERS;
D O I
10.1021/acsaem.4c01232
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The present study combines innovative strategies aiming at enhanced performance of direct ethanol fuel cells (DEFC) by modifying interfaces at both electrodes and electrolyte. Increasing the operating temperature to 180 degrees C to promote faster kinetics and thermally activated processes taking place in DEFC was possible by using phosphoric-acid-doped PBI (polybenzimidazole) composite electrolytes. The properties of the PBI electrolytes were improved by adding SiO2 as an inorganic second phase, promoting an increase in the proton conductivity and inhibiting ethanol crossover. Optimizing electrode reactions by increasing the triple-phase boundary was demonstrated by using a powdered-based PBI "ionomeric" concept to boost the performance of the proton exchange membrane fuel cell. The electrochemical characterization of the high-temperature direct ethanol fuel cells (HT-DEFC) showed that combining the strategies for the optimized electrode and electrolyte was crucial for increasing the performance of membrane electrode assemblies operating at 180 degrees C.
引用
收藏
页码:7759 / 7768
页数:10
相关论文
共 50 条
  • [41] Enhancing Proton Conductivity and Durability of Crosslinked PBI-Based High-Temperature PEM: Effectively Doping a Novel Cerium Triphosphonic-isocyanurate
    Guo, Hui
    Li, Zhongfang
    Sun, Peng
    Pei, Hongchang
    Zhang, Lei
    Cui, Weihui
    Yin, Xiaoyan
    Hui, Hongsen
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2021, 168 (02)
  • [42] Ethanol oxidation on a high temperature PBI-based DEFC using Pt/C, PtRu/C and Pt3Sn/C as catalysts
    José J. Linares
    Sabrina C. Zignani
    Thairo A. Rocha
    Ernesto R. Gonzalez
    Journal of Applied Electrochemistry, 2013, 43 : 147 - 158
  • [43] Characterization of PBI Membranes for High Temperature PEM Fuel Cells
    Yeager, Gary W.
    Krishnan, Lakshmi
    Early, Thomas
    Zhang, Chunxin T.
    Hjuler, Hans Aage
    Terkelsen, Carina
    Yang, J.
    Li, Q.
    Steenberg, Thomas
    POLYMER ELECTROLYTE FUEL CELLS 13 (PEFC 13), 2013, 58 (01): : 705 - 711
  • [44] Catalysis in high-temperature fuel cells
    Föger, K
    Ahmed, K
    JOURNAL OF PHYSICAL CHEMISTRY B, 2005, 109 (06): : 2149 - 2154
  • [45] Materials for high-temperature fuel cells
    Steele, BCH
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1996, 354 (1712): : 1695 - 1710
  • [46] HIGH-TEMPERATURE FUEL-CELLS
    MAITI, HS
    PARIA, MK
    SADHANA-ACADEMY PROCEEDINGS IN ENGINEERING SCIENCES, 1988, 13 : 59 - 71
  • [47] HIGH-TEMPERATURE METHANE FUEL CELLS
    SHULTZ, EB
    MARIANOWSKI, LG
    VORRES, KS
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1961, 108 (03) : C67 - C67
  • [48] High-temperature membrane fuel cells
    Canter, Neil
    Tribology and Lubrication Technology, 2021, 77 (03): : 14 - 15
  • [49] Element interdiffusion at electrolyte-cathode interfaces in ceramic high-temperature fuel cells
    Uhlenbruck, S.
    Moskalewicz, T.
    Jordan, N.
    Penkalla, H. -J.
    Buchkremer, H. P.
    SOLID STATE IONICS, 2009, 180 (4-5) : 418 - 423
  • [50] Ethanol oxidation on a high temperature PBI-based DEFC using Pt/C, PtRu/C and Pt3Sn/C as catalysts
    Linares, Jose J.
    Zignani, Sabrina C.
    Rocha, Thairo A.
    Gonzalez, Ernesto R.
    JOURNAL OF APPLIED ELECTROCHEMISTRY, 2013, 43 (02) : 147 - 158