Optimized Interfaces for PBI-Based High-Temperature Direct Ethanol Fuel Cells

被引:0
|
作者
da Silva, Rodrigo Pires [1 ]
de Matos, Bruno Ribeiro [1 ]
Fonseca, Fabio Coral [1 ]
Santiago, Elisabete Inacio [1 ]
机构
[1] Inst Pesquisas Energet & Nucl IPEN, BR-05008000 Sao Paulo, Brazil
来源
ACS APPLIED ENERGY MATERIALS | 2024年 / 7卷 / 18期
基金
巴西圣保罗研究基金会;
关键词
direct ethanol fuel cell; polybenzimidazole; composite membranes; binder; triple-phase boundary; interfaces; COMPOSITE MEMBRANES; PROTON CONDUCTION; DIRECT METHANOL; POLYBENZIMIDAZOLE; ELECTROLYTE; PERFORMANCE; IONOMERS;
D O I
10.1021/acsaem.4c01232
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The present study combines innovative strategies aiming at enhanced performance of direct ethanol fuel cells (DEFC) by modifying interfaces at both electrodes and electrolyte. Increasing the operating temperature to 180 degrees C to promote faster kinetics and thermally activated processes taking place in DEFC was possible by using phosphoric-acid-doped PBI (polybenzimidazole) composite electrolytes. The properties of the PBI electrolytes were improved by adding SiO2 as an inorganic second phase, promoting an increase in the proton conductivity and inhibiting ethanol crossover. Optimizing electrode reactions by increasing the triple-phase boundary was demonstrated by using a powdered-based PBI "ionomeric" concept to boost the performance of the proton exchange membrane fuel cell. The electrochemical characterization of the high-temperature direct ethanol fuel cells (HT-DEFC) showed that combining the strategies for the optimized electrode and electrolyte was crucial for increasing the performance of membrane electrode assemblies operating at 180 degrees C.
引用
收藏
页码:7759 / 7768
页数:10
相关论文
共 50 条
  • [31] Influence of membrane type and molecular weight distribution on the degradation of PBI-based HTPEM fuel cells
    Ossiander, T.
    Perchthaler, M.
    Heinzl, C.
    Schoenberger, F.
    Voelk, P.
    Welsch, M.
    Chromik, A.
    Hacker, V.
    Scheu, C.
    JOURNAL OF MEMBRANE SCIENCE, 2016, 509 : 27 - 35
  • [32] HIGH-TEMPERATURE FUEL CELLS
    EDWARDS, DG
    FUEL, 1968, 47 (01) : 83 - +
  • [33] HIGH-TEMPERATURE FUEL CELLS
    KRONENBERG, ML
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1961, 108 (08) : C167 - C167
  • [34] HIGH-TEMPERATURE FUEL CELLS
    EULER, KJ
    CHEMIE INGENIEUR TECHNIK, 1971, 43 (09) : 593 - &
  • [35] Different anode catalyst for high temperature polybenzimidazole-based direct ethanol fuel cells
    Linares, Jose J.
    Rocha, Thairo A.
    Zignani, Sabrina
    Paganin, Valdecir A.
    Gonzalez, Ernesto R.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2013, 38 (01) : 620 - 630
  • [36] High Temperature Direct Methanol Fuel Cell Based on Phosphoric Acid PBI Membrane
    Mamlouk, M.
    Scott, K.
    Hidayati, N.
    JOURNAL OF FUEL CELL SCIENCE AND TECHNOLOGY, 2011, 8 (06):
  • [37] Diffusion of oxygen at ceramic interfaces for high-temperature solid oxide fuel cells
    Horita, T
    Kishimoto, H
    Yamaji, K
    Sakai, N
    Xiong, YP
    Brito, ME
    Yokokawa, H
    DEFECTS AND DIFFUSION IN CERAMICS: AN ANNUAL RETROSPECTIVE VII, 2005, 242-244 : 129 - 141
  • [38] Diffusion of oxygen at ceramic interfaces for high-temperature Solid Oxide Fuel Cells
    Horita, Teruhisa
    Kishimoto, Haruo
    Yamaji, Katsuhiko
    Sakai, Natsuko
    Xiong, Yueping
    Brito, Manuel E.
    Yokokawa, Harumi
    Defect and Diffusion Forum, 2005, 242-244 : 129 - 141
  • [39] Direct and inverse neural networks modelling applied to study the influence of the gas diffusion layer properties on PBI-based PEM fuel cells
    Lobato, Justo
    Canizares, Pablo
    Rodrigo, Manuel A.
    Piuleac, Ciprian-George
    Curteanu, Silvia
    Linares, Jose J.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2010, 35 (15) : 7889 - 7897
  • [40] High temperature PBI-based membrane systems for pre-combustion carbon dioxide capture
    Berchtold, Kathryn A.
    Singh, Rajinder P.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2012, 243