Robust Density Estimation under Besov IPM Losses

被引:0
|
作者
Uppal, Ananya [1 ]
Singh, Shashank [2 ]
Poczos, Barnabas [2 ]
机构
[1] Carnegie Mellon Univ, Dept Math Sci, Pittsburgh, PA 15213 USA
[2] Carnegie Mellon Univ, Machine Learning Dept, Pittsburgh, PA 15213 USA
基金
美国国家科学基金会;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We study minimax convergence rates of nonparametric density estimation under the Huber contamination model, in which a proportion of the data comes from an unknown outlier distribution. We provide the first results for this problem under a large family of losses, called Besov integral probability metrics (IPMs), that include the Lp, Wasserstein, Kolmogorov-Smirnov, Cramer-von Mises, and other commonly used metrics. Under a range of smoothness assumptions on the population and outlier distributions, we show that a re-scaled thresholding wavelet estimator converges at minimax optimal rates under a wide variety of losses and also exhibits optimal dependence on the contamination proportion. We also provide a purely data-dependent extension of the estimator that adapts to both an unknown contamination proportion and the unknown smoothness of the true density. Finally, based on connections recently shown between density estimation under IPM losses and generative adversarial networks (GANs), we show that certain GAN architectures are robustly minimax optimal.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] A New Robust Approach for Highway Traffic Density Estimation
    Morbidi, Fabio
    Ojeda, Luis Leon
    de Wit, Carlos Canudas
    Bellicot, Iker
    2014 EUROPEAN CONTROL CONFERENCE (ECC), 2014, : 2575 - 2580
  • [42] Robust computer vision through kernel density estimation
    Chen, HF
    Meer, P
    COMPUTER VISON - ECCV 2002, PT 1, 2002, 2350 : 236 - 250
  • [43] Robust and efficient estimation by minimising a density power divergence
    Basu, A
    Harris, IR
    Hjort, NL
    Jones, MC
    BIOMETRIKA, 1998, 85 (03) : 549 - 559
  • [44] Robust and efficient estimation under data grouping
    Lin, N
    He, XM
    BIOMETRIKA, 2006, 93 (01) : 99 - 112
  • [45] Robust face landmark estimation under occlusion
    Burgos-Artizzu, Xavier P.
    Perona, Pietro
    Dollar, Piotr
    2013 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2013, : 1513 - 1520
  • [46] Robust Histogram Estimation Under Gaussian Noise
    Kostkova, Jitka
    Flusser, Jan
    COMPUTER ANALYSIS OF IMAGES AND PATTERNS, CAIP 2019, PT I, 2019, 11678 : 421 - 432
  • [47] Robust scale estimation under shifts in the mean
    Axt, I
    Duerre, Alexander
    Fried, Roland
    STATISTICS, 2021, 55 (04) : 787 - 830
  • [48] Robust motion estimation under varying illumination
    Kim, YH
    Martínez, AM
    Kak, AC
    IMAGE AND VISION COMPUTING, 2005, 23 (04) : 365 - 375
  • [49] Robust Testing and Estimation under Manipulation Attacks
    Acharya, Jayadev
    Sun, Ziteng
    Zhang, Huanyu
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 139, 2021, 139
  • [50] A robust state estimation method based on adaptive kernel density estimation theory
    College of Electronic and Information Engineering, Tongji University, Jiading District, Shanghai
    201804, China
    不详
    300010, China
    不详
    300200, China
    不详
    300110, China
    不详
    110179, China
    不详
    Jiangsu Province
    221000, China
    Zhongguo Dianji Gongcheng Xuebao, 19 (4937-4946):