Robust Density Estimation under Besov IPM Losses

被引:0
|
作者
Uppal, Ananya [1 ]
Singh, Shashank [2 ]
Poczos, Barnabas [2 ]
机构
[1] Carnegie Mellon Univ, Dept Math Sci, Pittsburgh, PA 15213 USA
[2] Carnegie Mellon Univ, Machine Learning Dept, Pittsburgh, PA 15213 USA
基金
美国国家科学基金会;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We study minimax convergence rates of nonparametric density estimation under the Huber contamination model, in which a proportion of the data comes from an unknown outlier distribution. We provide the first results for this problem under a large family of losses, called Besov integral probability metrics (IPMs), that include the Lp, Wasserstein, Kolmogorov-Smirnov, Cramer-von Mises, and other commonly used metrics. Under a range of smoothness assumptions on the population and outlier distributions, we show that a re-scaled thresholding wavelet estimator converges at minimax optimal rates under a wide variety of losses and also exhibits optimal dependence on the contamination proportion. We also provide a purely data-dependent extension of the estimator that adapts to both an unknown contamination proportion and the unknown smoothness of the true density. Finally, based on connections recently shown between density estimation under IPM losses and generative adversarial networks (GANs), we show that certain GAN architectures are robustly minimax optimal.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] A robust prediction estimation method for highway traffic density
    Shi Zhong-ke
    Proceedings of 2005 Chinese Control and Decision Conference, Vols 1 and 2, 2005, : 271 - +
  • [32] Robust Bayes estimation using the density power divergence
    Abhik Ghosh
    Ayanendranath Basu
    Annals of the Institute of Statistical Mathematics, 2016, 68 : 413 - 437
  • [33] NOTE ON ROBUST DENSITY ESTIMATION FOR SPATIAL POINT PATTERNS
    DIGGLE, PJ
    BIOMETRIKA, 1977, 64 (01) : 91 - 95
  • [34] Robust Nonparametric Probability Density Estimation by Soft Clustering
    Lopez-Rubio, Ezequiel
    Miguel Ortiz-de-Lazcano-Lobato, Juan
    Lopez-Rodriguez, Domingo
    del Carmen Vargas-Gonzalez, Maria
    ARTIFICIAL NEURAL NETWORKS - ICANN 2008, PT I, 2008, 5163 : 155 - 164
  • [35] Robust Bayes estimation using the density power divergence
    Ghosh, Abhik
    Basu, Ayanendranath
    ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2016, 68 (02) : 413 - 437
  • [36] Photon surfaces for robust, unbiased volumetric density estimation
    Deng, Xi
    Jiao, Shaojie
    Bitterli, Benedikt
    Jarosz, Wojciech
    ACM TRANSACTIONS ON GRAPHICS, 2019, 38 (04):
  • [37] An Improved Robust Fusion Method Based on Density Estimation
    Guo, Yunfei
    Xue, Anke
    Lin, Yuesong
    Peng, Dongliang
    2008 7TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION, VOLS 1-23, 2008, : 7576 - 7581
  • [38] Robust normal reference bandwidth for kernel density estimation
    Zhang, Jin
    Wang, Xueren
    STATISTICA NEERLANDICA, 2009, 63 (01) : 13 - 23
  • [39] Robust sparse kernel density estimation by inducing randomness
    Chen, Fei
    Yu, Huimin
    Yao, Jincao
    Hu, Roland
    PATTERN ANALYSIS AND APPLICATIONS, 2015, 18 (02) : 367 - 375
  • [40] Robust sparse kernel density estimation by inducing randomness
    Fei Chen
    Huimin Yu
    Jincao Yao
    Roland Hu
    Pattern Analysis and Applications, 2015, 18 : 367 - 375