Robust Density Estimation under Besov IPM Losses

被引:0
|
作者
Uppal, Ananya [1 ]
Singh, Shashank [2 ]
Poczos, Barnabas [2 ]
机构
[1] Carnegie Mellon Univ, Dept Math Sci, Pittsburgh, PA 15213 USA
[2] Carnegie Mellon Univ, Machine Learning Dept, Pittsburgh, PA 15213 USA
基金
美国国家科学基金会;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We study minimax convergence rates of nonparametric density estimation under the Huber contamination model, in which a proportion of the data comes from an unknown outlier distribution. We provide the first results for this problem under a large family of losses, called Besov integral probability metrics (IPMs), that include the Lp, Wasserstein, Kolmogorov-Smirnov, Cramer-von Mises, and other commonly used metrics. Under a range of smoothness assumptions on the population and outlier distributions, we show that a re-scaled thresholding wavelet estimator converges at minimax optimal rates under a wide variety of losses and also exhibits optimal dependence on the contamination proportion. We also provide a purely data-dependent extension of the estimator that adapts to both an unknown contamination proportion and the unknown smoothness of the true density. Finally, based on connections recently shown between density estimation under IPM losses and generative adversarial networks (GANs), we show that certain GAN architectures are robustly minimax optimal.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Nonparametric Density Estimation and Convergence of GANs under Besov IPM Losses
    Uppal, Ananya
    Singh, Shashank
    Poczos, Barnabas
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 32 (NIPS 2019), 2019, 32
  • [2] Minimax bounds for Besov classes in density estimation
    Sart, Mathieu
    ELECTRONIC JOURNAL OF STATISTICS, 2021, 15 (01): : 3184 - 3216
  • [3] DENSITY-ESTIMATION IN BESOV-SPACES
    KERKYACHARIAN, G
    PICARD, D
    STATISTICS & PROBABILITY LETTERS, 1992, 13 (01) : 15 - 24
  • [4] Robust multivariate density estimation under Gaussian noise
    Kostkova, Jitka
    Flusser, Jan
    MULTIDIMENSIONAL SYSTEMS AND SIGNAL PROCESSING, 2020, 31 (03) : 1113 - 1143
  • [5] Robust multivariate density estimation under Gaussian noise
    Jitka Kostková
    Jan Flusser
    Multidimensional Systems and Signal Processing, 2020, 31 : 1113 - 1143
  • [6] Modeling and Analysis of Core Losses of an IPM Machine for Online Estimation Purposes
    Nalakath, Shamsuddeen
    Preindl, Matthias
    Yang, Yinye
    Bilgin, Berker
    Cheng, Bing
    Emadi, Ali
    IECON 2015 - 41ST ANNUAL CONFERENCE OF THE IEEE INDUSTRIAL ELECTRONICS SOCIETY, 2015, : 4104 - 4109
  • [7] Nonparametric Density Estimation with Adversarial Losses
    Singh, Shashank
    Uppal, Ananya
    Li, Boyue
    Li, Chun-Liang
    Zaheer, Manzil
    Poczos, Barnabas
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 31 (NIPS 2018), 2018, 31
  • [8] Robust Parameter Estimation of Density Functions under Fuzzy Interval Observations
    Guillaume, Romain
    Dubois, Didier
    PROCEEDINGS OF THE 9TH INTERNATIONAL SYMPOSIUM ON IMPRECISE PROBABILITY: THEORIES AND APPLICATIONS (ISIPTA '15), 2015, : 147 - 156
  • [9] Robust kernel density estimation
    Kim, JooSeuk
    Scott, Clayton
    2008 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING, VOLS 1-12, 2008, : 3381 - 3384
  • [10] Robust Kernel Density Estimation
    Kim, JooSeuk
    Scott, Clayton D.
    JOURNAL OF MACHINE LEARNING RESEARCH, 2012, 13 : 2529 - 2565