Glivenko-Cantelli classes and NIP formulas

被引:0
|
作者
Khanaki, Karim [1 ]
机构
[1] Arak Univ Technol, Arak, Iran
关键词
Glivenko-Cantelli classes; NIP formulas; Fremlin-Talagrand stability; Baire-1; functions; Rosenthal compactum; BAIRE; SPACES;
D O I
10.1007/s00153-024-00932-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give several new equivalences of NIP for formulas and new proofs of known results using [T87] and [HOR91]. We emphasize that Keisler measures are more complicated than types (even in NIP context), in an analytic sense. Among other things, we show that, for a first order theory T and formula phi(x,y), the following are equivalent:<br /> (i) phi has NIP (for theory T).<br /> (ii) For any global phi-type p(x) and any model M, if p is finitely satisfiable in M, then p is generalized DBSC definable over M. In particular, if M is countable, p is DBSC definable over M. (Cf. Definition 3.3, Fact 3.4.)<br /> (iii) For any global Keisler phi-measure mu(x) and any model M, if mu is finitely satisfiable in M, then mu is generalized Baire-1/2 definable over M. In particular, if M is countable, p is Baire-1/2 definable over M. (Cf. Definition 3.5.)<br /> (iv) For any model M and any Keisler phi-measure mu(x) over M, sup (b is an element of M)|(1)/(k)& sum;(k)(i=1)phi(p(i),b)-mu(phi(x,b))|-> 0 for almost every (pi)is an element of S-phi(M)N with the product measure mu(N). (Cf. Theorem 4.3.)<br /> (v) Suppose moreover that T is countable, then for any countable model M, the space of global M-finitely satisfied types/measures is a Rosenthal compactum. (Cf. Theorem A.1.)
引用
收藏
页码:1005 / 1031
页数:27
相关论文
共 50 条
  • [21] A Glivenko-Cantelli theorem for exchangeable random variables
    Berti, P
    Rigo, P
    STATISTICS & PROBABILITY LETTERS, 1997, 32 (04) : 385 - 391
  • [22] ON GLIVENKO-CANTELLI THEOREM FOR INFINITE INVARIANT MEASURES
    KLIMKO, EM
    ANNALS OF MATHEMATICAL STATISTICS, 1967, 38 (04): : 1273 - &
  • [23] Extended Glivenko-Cantelli Theorem in Nonparametric Regression
    Cheng, Fuxia
    Yan, Jigao
    Yang, Lijian
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2014, 43 (17) : 3720 - 3725
  • [24] NECESSARY CONDITION FOR GLIVENKO-CANTELLI CONVERGENCE IN EN
    DEHARDT, J
    ANNALS OF MATHEMATICAL STATISTICS, 1970, 41 (06): : 2177 - 2178
  • [25] Glivenko-Cantelli type theorems and their applications
    Zhu, LX
    ACTA MATHEMATICA SCIENTIA, 1997, 17 (03) : 309 - 318
  • [26] The Glivenko-Cantelli problem, ten years later
    Talagrand, M
    JOURNAL OF THEORETICAL PROBABILITY, 1996, 9 (02) : 371 - 384
  • [27] ON GLIVENKO-CANTELLI THEOREM FOR INFINITE INVARIANT MEASURES
    KLIMKO, EM
    ANNALS OF MATHEMATICAL STATISTICS, 1967, 38 (03): : 956 - &
  • [28] Submultiplicative Glivenko-Cantelli and Uniform Convergence of Revenues
    Alon, Noga
    Babaioff, Moshe
    Gonczarowski, Yannai A.
    Mansour, Yishay
    Moran, Shay
    Yehudayoff, Amir
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 30 (NIPS 2017), 2017, 30
  • [29] SUR LE THEOREME DE GLIVENKO-CANTELLI
    AHMAD, S
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES, 1961, 252 (10): : 1413 - &
  • [30] 2 GLIVENKO-CANTELLI THEOREMS FOR FINITE DIMENSION
    SCHLEE, W
    ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1973, 28 (01): : 1 - 4