Eigenmodes of the Laplacian on hyperbolic lattices

被引:4
|
作者
Petermann, Eric [1 ]
Hinrichsen, Haye [1 ]
机构
[1] Julius Maximilians Univ Wurzburg, Fac Phys & Astron, D-97074 Wurzburg, Germany
关键词
D O I
10.1103/PhysRevD.109.106019
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We examine a specific category of eigenfunctions of the lattice Laplacian on {p, q}-tessellations of the Poincare<acute accent>disk that bear resemblance to plane waves in the continuum case. Our investigation reveals that the lattice eigenmodes deviate from the continuum solutions by a factor that depends solely on the local inclination of the vertex in relation to the wave's propagation direction. This allows us to compute certain eigenfunctions by numerical and analytical methods. For various special cases we find explicit exact eigenfunctions and their eigenvalues on the infinite lattice.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] EIGENMODES OF THE DAMPED WAVE EQUATION AND SMALL HYPERBOLIC SUBSETS
    Riviere, Gabriel
    ANNALES DE L INSTITUT FOURIER, 2014, 64 (03) : 1229 - 1267
  • [32] CELLULAR SHEAVES OF LATTICES AND THE TARSKI LAPLACIAN
    Christ, Robert
    Riess, Hans
    HOMOLOGY HOMOTOPY AND APPLICATIONS, 2022, 24 (01) : 325 - 345
  • [33] EIGENFUNCTIONS OF LAPLACIAN ON A REAL HYPERBOLIC SPACE
    MINEMURA, K
    JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 1975, 27 (01) : 82 - 105
  • [34] About eigenfunctions of the Laplacian on the hyperbolic disc
    Otal, JP
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1998, 327 (02): : 161 - 166
  • [35] Numerical analysis of eigenmodes localized at line defects in photonic lattices
    Sakoda, K
    Ueta, T
    Ohtaka, K
    PHYSICAL REVIEW B, 1997, 56 (23): : 14905 - 14908
  • [36] Excitation of multiple trapped-eigenmodes in terahertz metamolecule lattices
    Born, N.
    Al-Naib, I.
    Jansen, C.
    Ozaki, T.
    Morandotti, R.
    Koch, M.
    APPLIED PHYSICS LETTERS, 2014, 104 (10)
  • [37] Subgroups of hyperbolic groups, finiteness properties and complex hyperbolic lattices
    Isenrich, Claudio Llosa
    Py, Pierre
    INVENTIONES MATHEMATICAE, 2023, 235 (1) : 233 - 254
  • [38] Subgroups of hyperbolic groups, finiteness properties and complex hyperbolic lattices
    Claudio Llosa Isenrich
    Pierre Py
    Inventiones mathematicae, 2024, 235 : 233 - 254
  • [39] On deformation spaces of nonuniform hyperbolic lattices
    Kim, Sungwoon
    Kim, Inkang
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2016, 161 (02) : 283 - 303
  • [40] Gaussian Free Field on Hyperbolic Lattices
    Benjamini, Itai
    GEOMETRIC ASPECTS OF FUNCTIONAL ANALYSIS: ISRAEL SEMINAR (GAFA) 2011-2013, 2014, 2116 : 39 - 45