Subgroups of hyperbolic groups, finiteness properties and complex hyperbolic lattices

被引:0
|
作者
Claudio Llosa Isenrich
Pierre Py
机构
[1] Karlsruhe Institute of Technology,Faculty of Mathematics
[2] Université de Strasbourg & CNRS,IRMA
[3] Université Grenoble Alpes & CNRS,Institut Fourier
来源
Inventiones mathematicae | 2024年 / 235卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We prove that in a cocompact complex hyperbolic arithmetic lattice Γ<PU(m,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Gamma < {\mathrm{PU}}(m,1)$\end{document} of the simplest type, deep enough finite index subgroups admit plenty of homomorphisms to ℤ with kernel of type Fm−1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathscr{F}_{m-1}$\end{document} but not of type Fm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathscr{F}_{m}$\end{document}. This provides many finitely presented non-hyperbolic subgroups of hyperbolic groups and answers an old question of Brady. Our method also yields a proof of a special case of Singer’s conjecture for aspherical Kähler manifolds.
引用
收藏
页码:233 / 254
页数:21
相关论文
共 50 条