Subgroups of hyperbolic groups, finiteness properties and complex hyperbolic lattices

被引:0
|
作者
Claudio Llosa Isenrich
Pierre Py
机构
[1] Karlsruhe Institute of Technology,Faculty of Mathematics
[2] Université de Strasbourg & CNRS,IRMA
[3] Université Grenoble Alpes & CNRS,Institut Fourier
来源
Inventiones mathematicae | 2024年 / 235卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We prove that in a cocompact complex hyperbolic arithmetic lattice Γ<PU(m,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Gamma < {\mathrm{PU}}(m,1)$\end{document} of the simplest type, deep enough finite index subgroups admit plenty of homomorphisms to ℤ with kernel of type Fm−1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathscr{F}_{m-1}$\end{document} but not of type Fm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathscr{F}_{m}$\end{document}. This provides many finitely presented non-hyperbolic subgroups of hyperbolic groups and answers an old question of Brady. Our method also yields a proof of a special case of Singer’s conjecture for aspherical Kähler manifolds.
引用
收藏
页码:233 / 254
页数:21
相关论文
共 50 条
  • [41] Recognition of subgroups of direct products of hyperbolic groups
    Bridson, MR
    Miller, CF
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2004, 132 (01) : 59 - 65
  • [42] FIXED SUBGROUPS OF AUTOMORPHISMS OF RELATIVELY HYPERBOLIC GROUPS
    Minasyan, Ashot
    Osin, Denis
    QUARTERLY JOURNAL OF MATHEMATICS, 2012, 63 (03): : 695 - 712
  • [43] Combination of quasiconvex subgroups of relatively hyperbolic groups
    Martinez-Pedroza, Eduardo
    GROUPS GEOMETRY AND DYNAMICS, 2009, 3 (02) : 317 - 342
  • [44] Hyperbolic groups with almost finitely presented subgroups
    Kropholler, Peter H.
    Vigolo, Federico
    GROUPS GEOMETRY AND DYNAMICS, 2022, 16 (01) : 153 - 178
  • [45] Frattini subgroups of hyperbolic-like groups
    Goffer, G.
    Osin, D.
    Rybak, E.
    JOURNAL OF ALGEBRA, 2024, 658 : 22 - 37
  • [46] On index 2 subgroups of hyperbolic symmetry groups
    De Las Penas, Ma. Louise Antonette N.
    Felix, Rene P.
    Provido, Eden Delight B.
    ZEITSCHRIFT FUR KRISTALLOGRAPHIE, 2007, 222 (09): : 443 - 448
  • [47] Codimension one subgroups and boundaries of hyperbolic groups
    Delzant, Thomas
    Papasoglu, Panos
    GROUPS GEOMETRY AND DYNAMICS, 2010, 4 (03) : 533 - 548
  • [48] Subgroups of word hyperbolic groups in dimension 2
    Gersten, SM
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1996, 54 : 261 - 283
  • [49] S-SUBGROUPS OF THE REAL HYPERBOLIC GROUPS
    OMALLEY, TJ
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1980, 32 (01): : 246 - 256
  • [50] Relatively hyperbolic groups with semistable peripheral subgroups
    Haulmark, M.
    Mihalik, M.
    INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 2022, 32 (04) : 753 - 783