Prediction of deep molecular response in chronic myeloid leukemia using supervised machine learning models

被引:0
|
作者
Zad, Zahra [1 ,2 ]
Bonecker, Simone [3 ]
Wang, Taiyao [1 ,2 ]
Zalcberg, Ilana [3 ]
Stelzer, Gustavo T. [4 ]
Sabioni, Bruna [5 ]
Gutiyama, Luciana Mayumi [3 ]
Fleck, Julia L. [6 ]
Paschalidis, Ioannis Ch. [1 ,2 ,7 ,8 ]
机构
[1] Boston Univ, Dept Elect & Comp Engn, Div Syst Engn, Dept Biomed Engn,Fac Comp & Data Sci, Boston, MA 02215 USA
[2] Boston Univ, Hariri Inst Comp & Computat Sci & Engn, Boston, MA 02215 USA
[3] Brazilian Natl Canc Inst INCA, Rio De Janeiro, Brazil
[4] Univ Fed Rio de Janeiro, Inst Med Biochem Leopoldo de Meis, Rio De Janeiro, RJ, Brazil
[5] Univ Fed Rio de Janeiro, Clementino Fraga Filho Univ Hosp, Dept Hematol, Rio De Janeiro, RJ, Brazil
[6] Univ Clermont Auvergne, Ctr CIS, CNRS, Mines St Etienne,UMR LIMOS 6158, St Etienne, France
[7] Boston Univ, Dept Elect & Comp Engn, Dept Biomed Engn, Div Syst Engn, 8 St Marys St, Boston, MA 02215 USA
[8] Boston Univ, Fac Comp & Data Sci, 8 St Marys St, Boston, MA 02215 USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
Chronic Myeloid Leukemia (CML); Imatinib (IM); Deep Molecular Response (DMR); Treatment-free remission (TFR); Supervised Machine Learning; IMATINIB; SURVIVAL; CML;
D O I
10.1016/j.leukres.2024.107502
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
引用
收藏
页数:5
相关论文
共 50 条
  • [41] Chronic myeloid leukemia: Prediction of response to imatinib therapy using microRNA expression profiles
    Bruhn, O.
    Diewock, T.
    Pott, C.
    Kneba, M.
    Cascorbi, I
    Haenisch, S.
    NAUNYN-SCHMIEDEBERGS ARCHIVES OF PHARMACOLOGY, 2012, 385 : 16 - 16
  • [42] Molecular response in newly diagnosed chronic-phase chronic myeloid leukemia: prediction modeling and pathway analysis
    Radich, Jerald P.
    Wall, Matthew
    Branford, Susan
    Campbell, Catarina D.
    Chaturvedi, Shalini
    DeAngelo, Daniel J.
    Deininger, Michael W.
    Guinney, Justin
    Hochhaus, Andreas
    Hughes, Timothy P.
    Kantarjian, Hagop M.
    Larson, Richard A.
    Li, Sai
    Maegawa, Rodrigo
    Mishra, Kaushal
    Obourn, Vanessa
    Pinilla-Ibarz, Javier
    Purkayastha, Das
    Sadek, Islam
    Saglio, Giuseppe
    Shrestha, Alok
    White, Brian S.
    Druker, Brian J.
    HAEMATOLOGICA, 2023, 108 (06) : 1567 - 1578
  • [43] Acute myeloid leukemia diagnosis using deep learning
    Nagiub, Eman M.
    Hussain, Khaled F.
    Omar, Nagwa M.
    Al-Rashedi, Qamert
    EGYPTIAN JOURNAL OF HAEMATOLOGY, 2020, 45 (04): : 167 - 174
  • [44] Acute Myeloid Leukemia Diagnosis Using Deep Learning
    Abdelsalam, Eman M. Nagiub
    Hussain, Khaled F.
    Omar, Nagwa M.
    Ali, Qamar Taher
    CLINICAL LYMPHOMA MYELOMA & LEUKEMIA, 2019, 19 : S206 - S206
  • [45] SUPERVISED MACHINE LEARNING FOR PREDICTING MORTALITY IN ACUTE MYELOID LEUKEMIA PATIENTS USING ELECTRONIC HEALTH RECORD DATA
    Marinaro, X.
    Meng, Z.
    Zhang, X.
    Lodaya, K.
    Hayashida, D. K.
    Munson, S.
    D'Souza, F.
    VALUE IN HEALTH, 2021, 24 : S65 - S65
  • [46] Supervised Machine Learning Models for Prediction of COVID-19 Infection using Epidemiology Dataset
    Muhammad L.J.
    Algehyne E.A.
    Usman S.S.
    Ahmad A.
    Chakraborty C.
    Mohammed I.A.
    SN Computer Science, 2021, 2 (1)
  • [47] Prediction of automotive response using supervised machine learning in antilock braking systems and comparison with different models for improved vehicle safety
    Gunjate, Shital Suresh
    Khot, Sanjay A.
    ENGINEERING RESEARCH EXPRESS, 2024, 6 (04):
  • [48] Prediction of students' performance in online learning using supervised machine learning
    Khor, Ean Teng
    Darshan, Dave
    INTERNATIONAL JOURNAL OF INFORMATION AND LEARNING TECHNOLOGY, 2024, 41 (02) : 166 - 179
  • [49] Synthetic Slowness Shear Well-Log Prediction Using Supervised Machine Learning Models
    Tamoto, Hugo
    Contreras, Rodrigo Colnago
    dos Santos, Franciso Lledo
    Viana, Monique Simplicio
    Gioria, Rafael dos Santos
    Carneiro, Cleyton de Carvalho
    ARTIFICIAL INTELLIGENCE AND SOFT COMPUTING, ICAISC 2022, PT I, 2023, 13588 : 115 - 130
  • [50] Completeness of reporting of clinical prediction models developed using supervised machine learning: a systematic review
    Navarro, Constanza L. Andaur
    Damen, Johanna A. A.
    Takada, Toshihiko
    Nijman, Steven W. J.
    Dhiman, Paula
    Ma, Jie
    Collins, Gary S.
    Bajpai, Ram
    Riley, Richard D.
    Moons, Karel G. M.
    Hooft, Lotty
    BMC MEDICAL RESEARCH METHODOLOGY, 2022, 22 (01)