Prediction of deep molecular response in chronic myeloid leukemia using supervised machine learning models

被引:0
|
作者
Zad, Zahra [1 ,2 ]
Bonecker, Simone [3 ]
Wang, Taiyao [1 ,2 ]
Zalcberg, Ilana [3 ]
Stelzer, Gustavo T. [4 ]
Sabioni, Bruna [5 ]
Gutiyama, Luciana Mayumi [3 ]
Fleck, Julia L. [6 ]
Paschalidis, Ioannis Ch. [1 ,2 ,7 ,8 ]
机构
[1] Boston Univ, Dept Elect & Comp Engn, Div Syst Engn, Dept Biomed Engn,Fac Comp & Data Sci, Boston, MA 02215 USA
[2] Boston Univ, Hariri Inst Comp & Computat Sci & Engn, Boston, MA 02215 USA
[3] Brazilian Natl Canc Inst INCA, Rio De Janeiro, Brazil
[4] Univ Fed Rio de Janeiro, Inst Med Biochem Leopoldo de Meis, Rio De Janeiro, RJ, Brazil
[5] Univ Fed Rio de Janeiro, Clementino Fraga Filho Univ Hosp, Dept Hematol, Rio De Janeiro, RJ, Brazil
[6] Univ Clermont Auvergne, Ctr CIS, CNRS, Mines St Etienne,UMR LIMOS 6158, St Etienne, France
[7] Boston Univ, Dept Elect & Comp Engn, Dept Biomed Engn, Div Syst Engn, 8 St Marys St, Boston, MA 02215 USA
[8] Boston Univ, Fac Comp & Data Sci, 8 St Marys St, Boston, MA 02215 USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
Chronic Myeloid Leukemia (CML); Imatinib (IM); Deep Molecular Response (DMR); Treatment-free remission (TFR); Supervised Machine Learning; IMATINIB; SURVIVAL; CML;
D O I
10.1016/j.leukres.2024.107502
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
引用
收藏
页数:5
相关论文
共 50 条
  • [31] Standardized definitions of molecular response in chronic myeloid leukemia
    N C P Cross
    H E White
    M C Müller
    G Saglio
    A Hochhaus
    Leukemia, 2012, 26 : 2172 - 2175
  • [32] Standardized definitions of molecular response in chronic myeloid leukemia
    Cross, N. C. P.
    White, H. E.
    Mueller, M. C.
    Saglio, G.
    Hochhaus, A.
    LEUKEMIA, 2012, 26 (10) : 2172 - 2175
  • [33] Supervised Machine Learning Models for Liver Disease Risk Prediction
    Dritsas, Elias
    Trigka, Maria
    COMPUTERS, 2023, 12 (01)
  • [34] Reporting results for deep molecular responses in chronic myeloid leukemia
    Morley, A. A.
    LEUKEMIA, 2016, 30 (07) : 1630 - +
  • [35] Prediction of crop yield in India using machine learning and hybrid deep learning models
    Saravanan, Krithikha Sanju
    Bhagavathiappan, Velammal
    ACTA GEOPHYSICA, 2024, 72 (06) : 4613 - 4632
  • [36] An evaluation of machine learning and deep learning models for drought prediction using weather data
    Jiang, Weiwei
    Luo, Jiayun
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2022, 43 (03) : 3611 - 3626
  • [37] Reporting results for deep molecular responses in chronic myeloid leukemia
    A A Morley
    Leukemia, 2016, 30 : 1630 - 1631
  • [38] Influence of Telomere Length on the Achievement of Deep Molecular Response With Imatinib in Chronic Myeloid Leukemia Patients
    Estrada, Natalia
    Xicoy, Blanca
    Beier, Fabian
    Garcia, Olga
    Morales, Cristian
    Boque, Concepcion
    Saguees, Miguel
    Ferreira, Monica S. Ventura
    Vallansot, Rolando
    Marce, Silvia
    Cabezon, Marta
    Brummendorf, Tim H.
    Zamora, Lurdes
    HEMASPHERE, 2021, 5 (12):
  • [39] Evaluating molecular representations in machine learning models for drug response prediction and interpretability
    Baptista, Delora
    Correia, Joao
    Pereira, Bruno
    Rocha, Miguel
    JOURNAL OF INTEGRATIVE BIOINFORMATICS, 2022, 19 (03)
  • [40] Review of machine learning and deep learning models for toxicity prediction
    Guo, Wenjing
    Liu, Jie
    Dong, Fan
    Song, Meng
    Li, Zoe
    Khan, Md Kamrul Hasan
    Patterson, Tucker A.
    Hong, Huixiao
    EXPERIMENTAL BIOLOGY AND MEDICINE, 2023, 248 (21) : 1952 - 1973