ON THE DENSITY OF SUMSETS, II

被引:1
|
作者
Leonetti, Paolo [1 ]
Tringali, Salvatore [2 ]
机构
[1] Univ Insubria, Dept Econ, Via Monte Generoso 71, I-21100 Varese, Italy
[2] Hebei Normal Univ, Sch Math Sci, Shijiazhuang 050024, Hebei, Peoples R China
关键词
asymptotic density; Buck density; sumsets; upper and lower densities;
D O I
10.1017/S000497272300062X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Arithmetic quasidensities are a large family of real-valued set functions partially defined on the power set of $\mathbb {N}$ , including the asymptotic density, the Banach density and the analytic density. Let $B \subseteq \mathbb {N}$ be a nonempty set covering $o(n!)$ residue classes modulo $n!$ as $n\to \infty $ (for example, the primes or the perfect powers). We show that, for each $\alpha \in [0,1]$ , there is a set $A\subseteq \mathbb {N}$ such that, for every arithmetic quasidensity $\mu $ , both A and the sumset $A+B$ are in the domain of $\mu $ and, in addition, $\mu (A + B) = \alpha $ . The proof relies on the properties of a little known density first considered by Buck ['The measure theoretic approach to density', Amer. J. Math. 68 (1946), 560-580].
引用
收藏
页码:414 / 419
页数:6
相关论文
共 50 条
  • [41] Sumsets in the set of squares
    Elsholtz, Christian
    Wurzinger, Lena
    QUARTERLY JOURNAL OF MATHEMATICS, 2024, 75 (04): : 1243 - 1254
  • [42] On sumsets and spectral gaps
    Croot, Ernie
    Schoen, Tomasz
    ACTA ARITHMETICA, 2009, 136 (01) : 47 - 55
  • [43] Sumsets and Veronese varieties
    Colarte-Gomez, Liena
    Elias, Joan
    Miro-Roig, Rosa M.
    COLLECTANEA MATHEMATICA, 2023, 74 (02) : 353 - 374
  • [44] Sumsets being squares
    Dujella, A.
    Elsholtz, C.
    ACTA MATHEMATICA HUNGARICA, 2013, 141 (04) : 353 - 357
  • [45] ON ARITHMETIC PROPERTIES OF SUMSETS
    Balog, A.
    Rivat, J.
    Sarkoezy, A.
    ACTA MATHEMATICA HUNGARICA, 2014, 144 (01) : 18 - 42
  • [46] Sumsets and Projective Curves
    J. Elias
    Mediterranean Journal of Mathematics, 2022, 19
  • [47] Sumsets of sparse sets
    Dubickas, Arturas
    Sarka, Paulius
    PERIODICA MATHEMATICA HUNGARICA, 2012, 64 (02) : 169 - 179
  • [48] Projections, entropy and sumsets
    Paul Balister
    Béla Bollobás
    Combinatorica, 2012, 32 : 125 - 141
  • [49] Squarefree numbers in sumsets
    Schoen, T
    INDAGATIONES MATHEMATICAE-NEW SERIES, 2005, 16 (02): : 251 - 265
  • [50] ARITHMETIC PROGRESSIONS IN SUMSETS
    RUZSA, IZ
    ACTA ARITHMETICA, 1991, 60 (02) : 191 - 202