ON THE DENSITY OF SUMSETS, II

被引:1
|
作者
Leonetti, Paolo [1 ]
Tringali, Salvatore [2 ]
机构
[1] Univ Insubria, Dept Econ, Via Monte Generoso 71, I-21100 Varese, Italy
[2] Hebei Normal Univ, Sch Math Sci, Shijiazhuang 050024, Hebei, Peoples R China
关键词
asymptotic density; Buck density; sumsets; upper and lower densities;
D O I
10.1017/S000497272300062X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Arithmetic quasidensities are a large family of real-valued set functions partially defined on the power set of $\mathbb {N}$ , including the asymptotic density, the Banach density and the analytic density. Let $B \subseteq \mathbb {N}$ be a nonempty set covering $o(n!)$ residue classes modulo $n!$ as $n\to \infty $ (for example, the primes or the perfect powers). We show that, for each $\alpha \in [0,1]$ , there is a set $A\subseteq \mathbb {N}$ such that, for every arithmetic quasidensity $\mu $ , both A and the sumset $A+B$ are in the domain of $\mu $ and, in addition, $\mu (A + B) = \alpha $ . The proof relies on the properties of a little known density first considered by Buck ['The measure theoretic approach to density', Amer. J. Math. 68 (1946), 560-580].
引用
收藏
页码:414 / 419
页数:6
相关论文
共 50 条
  • [31] On Sumsets and Convex Hull
    Boeroeczky, Karoly J.
    Santos, Francisco
    Serra, Oriol
    DISCRETE & COMPUTATIONAL GEOMETRY, 2014, 52 (04) : 705 - 729
  • [32] On arithmetic properties of sumsets
    A. Balog
    J. Rivat
    A. Sárközy
    Acta Mathematica Hungarica, 2014, 144 : 18 - 42
  • [33] On the Dimension of Iterated Sumsets
    Schmeling, Jorg
    Shmerkin, Pablo
    RECENT DEVELOPMENTS IN FRACTALS AND RELATED FIELDS, 2010, : 55 - +
  • [34] Sumsets and Projective Curves
    Elias, J.
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2022, 19 (04)
  • [35] On sumsets in Euclidean space
    Fainleib, AS
    JOURNAL OF NUMBER THEORY, 2000, 82 (01) : 121 - 133
  • [36] Iterated sumsets and setpartitions
    David J. Grynkiewicz
    The Ramanujan Journal, 2020, 52 : 499 - 518
  • [37] On Sumsets of Convex Sets
    Schoen, Tomasz
    Shkredov, Ilya D.
    COMBINATORICS PROBABILITY & COMPUTING, 2011, 20 (05): : 793 - 798
  • [38] Sumsets and Veronese varieties
    Liena Colarte-Gómez
    Joan Elias
    Rosa M. Miró-Roig
    Collectanea Mathematica, 2023, 74 : 353 - 374
  • [39] On Sumsets of Subsets of Squares
    Tomasz Schoen
    Proceedings of the Steklov Institute of Mathematics, 2021, 314 : 300 - 306
  • [40] Arithmetic progressions in sumsets
    B. Green
    Geometric & Functional Analysis GAFA, 2002, 12 : 584 - 597