CLOSED-FORM SOLUTIONS FOR A REACTION-DIFFUSION SIR MODEL WITH DIFFERENT DIFFUSION COEFFICIENTS

被引:2
|
作者
Naz, Rehana [1 ]
Johnpillai, Andrew gratien [2 ]
Mahomed, Fazal mahmood [3 ]
Omame, Andrew [4 ]
机构
[1] Lahore Sch Econ, Dept Math & Stat Sci, Lahore 53200, Pakistan
[2] Eastern Univ, Dept Math, Chenkaladi 30350, Sri Lanka
[3] Univ Witwatersrand, DDSI NRF Ctr Excellence Math & Stat Sci, ZA-2050 Johannesburg, South Africa
[4] Fed Univ Technol Owerri, Dept Math, Owerri, Nigeria
关键词
Reaction-diffusion SIR epidemic model; symmetry approach; EPIDEMIC MODEL; 1ST INTEGRALS; CONSERVATION-LAWS; SYMBOLIC SOFTWARE; SYMMETRY; SYSTEMS; PACKAGE;
D O I
10.3934/dcdss.2024103
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We use Lie point symmetries to obtain reductions and closed-form solutions for the reaction-diffusion SIR epidemic model. We determine that the Lie algebra for this model is three-dimensional. By invoking these Lie symmetries, we establish closed-form solutions for the reaction-diffusion SIR model. We employ the appropriate initial and boundary conditions to relate the derived closed-form solution to a real-world scenario. Furthermore, we utilize the closed-form solutions to generate a graphical representation of the densities of susceptible, infected, and removed individuals. We also perform a sensitivity analysis of the density of infected individuals to gain valuable insights into the transmission dynamics of the infectious disease.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] ON THE SOLUTIONS OF FRACTIONAL REACTION-DIFFUSION EQUATIONS
    Singh, Jagdev
    Kumar, Devendra
    Rathore, Sushila
    MATEMATICHE, 2013, 68 (01): : 23 - 32
  • [42] A STOCHASTIC REACTION-DIFFUSION MODEL
    KOTELENEZ, P
    LECTURE NOTES IN MATHEMATICS, 1989, 1390 : 132 - 137
  • [43] EXACT SOLUTIONS OF A REACTION-DIFFUSION EGUATION
    Skotar, Alena
    Yurik, Ivan
    UKRAINIAN FOOD JOURNAL, 2012, 1 (02) : 81 - +
  • [44] Trajectory attractor of a reaction-diffusion system with a series of zero diffusion coefficients
    V. V. Chepyzhov
    M. I. Vishik
    Russian Journal of Mathematical Physics, 2009, 16 : 208 - 227
  • [45] NONLINEAR DIFFUSION AND STABLE PERIOD-2 SOLUTIONS OF A DISCRETE REACTION-DIFFUSION MODEL
    MITCHELL, AR
    SCHOOMBIE, SW
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1989, 25 (03) : 363 - 372
  • [46] NECESSARY OPTIMALITY CONDITIONS OF A REACTION-DIFFUSION SIR MODEL WITH ABC FRACTIONAL DERIVATIVES
    Ammi, Moulay Rchid Sidi
    Tahiri, Mostafa
    Torres, Delfim F. M.
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2022, 15 (03): : 621 - 637
  • [47] SPARSE OPTIMAL CONTROL OF PATTERN FORMATIONS FOR AN SIR REACTION-DIFFUSION EPIDEMIC MODEL
    Chang, Lili
    Gong, Wei
    Jin, Zhen
    Sun, Gui-Quan
    SIAM JOURNAL ON APPLIED MATHEMATICS, 2022, 82 (05) : 1764 - 1790
  • [48] Existence of global solutions for a reaction-diffusion equation with singular coefficients and conical degeneration
    Trong, Nguyen Ngoc
    Cuong, Nguyen Quoc
    Do, Tan Duc
    ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2022, 41 (3-4): : 301 - 321
  • [49] A SIS REACTION-DIFFUSION MODEL WITH A FREE BOUNDARY CONDITION AND NONHOMOGENEOUS COEFFICIENTS
    Wang, Yizhuo
    Guo, Shangjiang
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2019, 24 (04): : 1627 - 1652
  • [50] Existence and Uniqueness of Classical Solutions to a Nonlinear Reaction-Diffusion Model
    A. Ambrazevičius
    V. Skakauskas
    Acta Applicandae Mathematicae, 2020, 169 : 559 - 575