CLOSED-FORM SOLUTIONS FOR A REACTION-DIFFUSION SIR MODEL WITH DIFFERENT DIFFUSION COEFFICIENTS

被引:2
|
作者
Naz, Rehana [1 ]
Johnpillai, Andrew gratien [2 ]
Mahomed, Fazal mahmood [3 ]
Omame, Andrew [4 ]
机构
[1] Lahore Sch Econ, Dept Math & Stat Sci, Lahore 53200, Pakistan
[2] Eastern Univ, Dept Math, Chenkaladi 30350, Sri Lanka
[3] Univ Witwatersrand, DDSI NRF Ctr Excellence Math & Stat Sci, ZA-2050 Johannesburg, South Africa
[4] Fed Univ Technol Owerri, Dept Math, Owerri, Nigeria
关键词
Reaction-diffusion SIR epidemic model; symmetry approach; EPIDEMIC MODEL; 1ST INTEGRALS; CONSERVATION-LAWS; SYMBOLIC SOFTWARE; SYMMETRY; SYSTEMS; PACKAGE;
D O I
10.3934/dcdss.2024103
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We use Lie point symmetries to obtain reductions and closed-form solutions for the reaction-diffusion SIR epidemic model. We determine that the Lie algebra for this model is three-dimensional. By invoking these Lie symmetries, we establish closed-form solutions for the reaction-diffusion SIR model. We employ the appropriate initial and boundary conditions to relate the derived closed-form solution to a real-world scenario. Furthermore, we utilize the closed-form solutions to generate a graphical representation of the densities of susceptible, infected, and removed individuals. We also perform a sensitivity analysis of the density of infected individuals to gain valuable insights into the transmission dynamics of the infectious disease.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Traveling Wave Solutions in a Reaction-Diffusion Epidemic Model
    Wang, Sheng
    Liu, Wenbin
    Guo, Zhengguang
    Wang, Weiming
    ABSTRACT AND APPLIED ANALYSIS, 2013,
  • [22] BEHAVIOR OF SOLUTIONS FOR A MODEL IN HETEROGENEOUS CATALYTIC REACTION-DIFFUSION
    王远弟
    Annals of Differential Equations, 1998, (04) : 664 - 671
  • [23] On the Solutions of the Generalized Reaction-Diffusion Model for Bacterial Colony
    A. M. A. El-Sayed
    S. Z. Rida
    A. A. M. Arafa
    Acta Applicandae Mathematicae, 2010, 110 : 1501 - 1511
  • [24] Traveling wave solutions for an autocatalytic reaction-diffusion model
    Mansour, M. B. A.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2013, 18 (02) : 276 - 281
  • [25] On the Solutions of the Generalized Reaction-Diffusion Model for Bacterial Colony
    El-Sayed, A. M. A.
    Rida, S. Z.
    Arafa, A. A. M.
    ACTA APPLICANDAE MATHEMATICAE, 2010, 110 (03) : 1501 - 1511
  • [26] A closed-form analytic expression for FRAP formula for the binding diffusion model
    Kang, Minchul
    Kenworthy, Anne K.
    BIOPHYSICAL JOURNAL, 2008, 95 (02) : L13 - L15
  • [27] ON THE CLOSED-FORM SOLUTIONS OF THE WAVE, DIFFUSION AND BURGERS EQUATIONS IN FLUID-MECHANICS
    PANAYOTOUNAKOS, DE
    DRIKAKIS, D
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1995, 75 (06): : 437 - 447
  • [28] Family of closed-form solutions for two-dimensional correlated diffusion processes
    Shan, Haozhe
    Moreno-Bote, Ruben
    Drugowitsch, Jan
    PHYSICAL REVIEW E, 2019, 100 (03)
  • [29] Accurate closed-form solution of the SIR epidemic model
    Barlow, Nathaniel S.
    Weinstein, Steven J.
    PHYSICA D-NONLINEAR PHENOMENA, 2020, 408
  • [30] A reaction-diffusion model with nonlinearity driven diffusion
    Man-jun Ma
    Jia-jia Hu
    Jun-jie Zhang
    Ji-cheng Tao
    Applied Mathematics-A Journal of Chinese Universities, 2013, 28 : 290 - 302