DisDiff: Unsupervised Disentanglement of Diffusion Probabilistic Models

被引:0
|
作者
Yang, Tao [1 ,2 ,4 ]
Wang, Yuwang [3 ]
Lu, Yan [4 ]
Zheng, Nanning [1 ,2 ]
机构
[1] Xi An Jiao Tong Univ, Natl Key Lab Human Machine Hybrid Augmented Intel, Natl Engn Res Ctr Visual Informat & Applicat, Xian, Peoples R China
[2] Xi An Jiao Tong Univ, Inst Artificial Intelligence & Robot, Xian, Peoples R China
[3] Tsinghua Univ, Shanghai AI Lab, Beijing, Peoples R China
[4] Microsoft Res Asia, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Targeting to understand the underlying explainable factors behind observations and modeling the conditional generation process on these factors, we connect disentangled representation learning to Diffusion Probabilistic Models (DPMs) to take advantage of the remarkable modeling ability of DPMs. We propose a new task, disentanglement of (DPMs): given a pre-trained DPM, without any annotations of the factors, the task is to automatically discover the inherent factors behind the observations and disentangle the gradient fields of DPM into sub-gradient fields, each conditioned on the representation of each discovered factor. With disentangled DPMs, those inherent factors can be automatically discovered, explicitly represented, and clearly injected into the diffusion process via the sub-gradient fields. To tackle this task, we devise an unsupervised approach named DisDiff, achieving disentangled representation learning in the framework of DPMs. Extensive experiments on synthetic and real-world datasets demonstrate the effectiveness of DisDiff.
引用
收藏
页数:27
相关论文
共 50 条
  • [41] Unsupervised Disentanglement of Linear-Encoded Facial Semantics
    Zheng, Yutong
    Huang, Yu-Kai
    Tao, Ran
    Shen, Zhiqiang
    Savvides, Marios
    2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 3916 - 3925
  • [42] Unsupervised MRI motion artifact disentanglement: introducing MAUDGAN
    Safari, Mojtaba
    Yang, Xiaofeng
    Chang, Chih-Wei
    Qiu, Richard L. J.
    Fatemi, Ali
    Archambault, Louis
    PHYSICS IN MEDICINE AND BIOLOGY, 2024, 69 (11):
  • [43] Interpretable Visual Neural Decoding with Unsupervised Semantic Disentanglement
    Zhou, Qiongyi
    Du, Changde
    Li, Dan
    Wen, Bincheng
    Chang, Le
    He, Huiguang
    MACHINE INTELLIGENCE RESEARCH, 2025,
  • [44] Unsupervised Disentanglement Learning via Dirichlet Variational Autoencoder
    Xu, Kunxiong
    Fan, Wentao
    Liu, Xin
    ADVANCES AND TRENDS IN ARTIFICIAL INTELLIGENCE. THEORY AND APPLICATIONS, IEA/AIE 2023, PT I, 2023, 13925 : 341 - 352
  • [45] Orthogonal Jacobian Regularization for Unsupervised Disentanglement in Image Generation
    Wei, Yuxiang
    Shi, Yupeng
    Liu, Xiao
    Ji, Zhilong
    Gao, Yuan
    Wu, Zhongqin
    Zuo, Wangmeng
    2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 6701 - 6710
  • [46] Unsupervised Learning of Probabilistic Grammar-Markov Models for Object Categories
    Zhu, Long
    Chen, Yuanhao
    Yuille, Alan
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2009, 31 (01) : 114 - 128
  • [47] Semantic role induction in Persian: An unsupervised approach by using probabilistic models
    Saeedi, Parisa
    Faili, Heshaam
    Shakery, Azadeh
    DIGITAL SCHOLARSHIP IN THE HUMANITIES, 2016, 31 (01) : 181 - 203
  • [48] ILVR: Conditioning Method for Denoising Diffusion Probabilistic Models
    Choi, Jooyoung
    Kim, Sungwon
    Jeong, Yonghyun
    Gwon, Youngjune
    Yoon, Sungroh
    2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 14347 - 14356
  • [49] Discrete Diffusion Probabilistic Models for Symbolic Music Generation
    Plasser, Matthias
    Peter, Silvan
    Widmer, Gerhard
    PROCEEDINGS OF THE THIRTY-SECOND INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, IJCAI 2023, 2023, : 5842 - 5850
  • [50] Denoising diffusion probabilistic models for generative alloy design☆
    Fernandez-Zelaia, Patxi
    Thapliyal, Saket
    Kannan, Rangasayee
    Nandwana, Peeyush
    Yamamoto, Yukinori
    Nycz, Andrzej
    Paquit, Vincent
    Kirka, Michael M.
    ADDITIVE MANUFACTURING, 2024, 94