DisDiff: Unsupervised Disentanglement of Diffusion Probabilistic Models

被引:0
|
作者
Yang, Tao [1 ,2 ,4 ]
Wang, Yuwang [3 ]
Lu, Yan [4 ]
Zheng, Nanning [1 ,2 ]
机构
[1] Xi An Jiao Tong Univ, Natl Key Lab Human Machine Hybrid Augmented Intel, Natl Engn Res Ctr Visual Informat & Applicat, Xian, Peoples R China
[2] Xi An Jiao Tong Univ, Inst Artificial Intelligence & Robot, Xian, Peoples R China
[3] Tsinghua Univ, Shanghai AI Lab, Beijing, Peoples R China
[4] Microsoft Res Asia, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Targeting to understand the underlying explainable factors behind observations and modeling the conditional generation process on these factors, we connect disentangled representation learning to Diffusion Probabilistic Models (DPMs) to take advantage of the remarkable modeling ability of DPMs. We propose a new task, disentanglement of (DPMs): given a pre-trained DPM, without any annotations of the factors, the task is to automatically discover the inherent factors behind the observations and disentangle the gradient fields of DPM into sub-gradient fields, each conditioned on the representation of each discovered factor. With disentangled DPMs, those inherent factors can be automatically discovered, explicitly represented, and clearly injected into the diffusion process via the sub-gradient fields. To tackle this task, we devise an unsupervised approach named DisDiff, achieving disentangled representation learning in the framework of DPMs. Extensive experiments on synthetic and real-world datasets demonstrate the effectiveness of DisDiff.
引用
收藏
页数:27
相关论文
共 50 条
  • [21] ENHANCED SEPARABLE DISENTANGLEMENT FOR UNSUPERVISED DOMAIN ADAPTATION
    Zhang, Youshan
    Davison, Brian D.
    2021 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2021, : 784 - 788
  • [22] Unsupervised Representation Learning with Recognition-Parametrised Probabilistic Models
    Walker, William I.
    Soulat, Hugo
    Yu, Changmin
    Sahani, Maneesh
    INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 206, 2023, 206
  • [23] Combining supervised and unsupervised models via unconstrained probabilistic embedding
    Ao, Xiang
    Luo, Ping
    Ma, Xudong
    Zhuang, Fuzhen
    He, Qing
    Shi, Zhongzhi
    Shen, Zhiyong
    INFORMATION SCIENCES, 2014, 257 : 101 - 114
  • [24] Unsupervised document zone identification using probabilistic graphical models
    Varga, Andrea
    Preotiuc-Pietro, Daniel
    Ciravegna, Fabio
    LREC 2012 - EIGHTH INTERNATIONAL CONFERENCE ON LANGUAGE RESOURCES AND EVALUATION, 2012, : 1610 - 1617
  • [25] ColorPeel: Color Prompt Learning with Diffusion Models via Color and Shape Disentanglement
    Butt, Muhammad Atif
    Wang, Kai
    Vazquez-Corral, Javier
    van de Weijer, Joost
    COMPUTER VISION-ECCV 2024, PT VII, 2025, 15065 : 456 - 472
  • [26] Taming Diffusion Probabilistic Models for Character Control
    Chen, Rui
    Shi, Mingyi
    Huang, Shaoli
    Tan, Ping
    Komura, Taku
    Chen, Xuelin
    PROCEEDINGS OF SIGGRAPH 2024 CONFERENCE PAPERS, 2024,
  • [27] Diffusion Probabilistic Models for Structured Node Classification
    Jang, Hyosoon
    Park, Seonghyun
    Mo, Sangwoo
    Ahn, Sungsoo
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [28] EXPLORING DIFFUSION MODELS FOR UNSUPERVISED VIDEO ANOMALY DETECTION
    Tur, Anil Osman
    Dall'Asen, Nicola
    Beyan, Cigdem
    Ricci, Elisa
    2023 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2023, : 2540 - 2544
  • [29] Unsupervised Medical Image Translation With Adversarial Diffusion Models
    Ozbey, Muzaffer
    Dalmaz, Onat
    Dar, Salman U. H.
    Bedel, Hasan A.
    Ozturk, Saban
    Gungor, Alper
    Cukur, Tolga
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2023, 42 (12) : 3524 - 3539
  • [30] DEEP UNSUPERVISED REFLECTION REMOVAL USING DIFFUSION MODELS
    Rosh, Green
    Prasad, B. H. Pawan
    Boregowda, Lokesh R.
    Mitra, Kaushik
    2023 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2023, : 2045 - 2049