Y-90 PET/MR imaging optimization with a Bayesian penalized likelihood reconstruction algorithm

被引:0
|
作者
Calatayud-Jordan, Jose [1 ]
Carrasco-Vela, Nuria [2 ]
Chimeno-Hernandez, Jose [1 ]
Carles-Farina, Montserrat [3 ,4 ]
Olivas-Arroyo, Consuelo [1 ]
Bello-Arques, Pilar [1 ]
Perez-Enguix, Daniel [5 ]
Marti-Bonmati, Luis [3 ,4 ,5 ]
Torres-Espallardo, Irene [1 ,3 ,4 ]
机构
[1] La Fe Univ, Polytech Hosp, Dept Nucl Med, Ave Fernando Abril Martorell 106, Valencia 46026, Spain
[2] Clin Univ Hosp Valencia, Radiophys & Radiol Protect Serv, Ave Blasco Ibanez 17, Valencia 46010, Spain
[3] La Fe Univ, Hlth Res Inst Hosp La Fe IIS La Fe, Biomed Imaging Res Grp GIBI230, Ave Fernando Abril Martorell 106, Valencia 46026, Spain
[4] Polytech Hosp, Ave Fernando Abril Martorell 106, Valencia 46026, Spain
[5] La Fe Univ, Polytech Hosp, Dept Radiol, Ave Fernando Abril Martorell 106, Valencia 46026, Spain
关键词
Bayesian penalized likelihood; PET/MR; Q.Clear; Image quality; Radioembolization; Yttrium-90; EXPECTATION MAXIMIZATION; RADIOEMBOLIZATION; QUALITY; MICROSPHERES; THERAPY;
D O I
10.1007/s13246-024-01452-7
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Positron Emission Tomography (PET) imaging after 90\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$<^>{90}$$\end{document}Y liver radioembolization is used for both lesion identification and dosimetry. Bayesian penalized likelihood (BPL) reconstruction algorithms are an alternative to ordered subset expectation maximization (OSEM) with improved image quality and lesion detectability. The investigation of optimal parameters for 90\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$<^>{90}$$\end{document}Y image reconstruction of Q.Clear, a commercial BPL algorithm developed by General Electric (GE), in PET/MR is a field of interest and the subject of this study. The NEMA phantom was filled at an 8:1 sphere-to-background ratio. Acquisitions were performed on a PET/MR scanner for clinically relevant activities between 0.7 and 3.3 MBq/ml. Reconstructions with Q.Clear were performed varying the beta\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta $$\end{document} penalty parameter between 20 and 6000, the acquisition time between 5 and 20 min and pixel size between 1.56 and 4.69 mm. OSEM reconstructions of 28 subsets with 2 and 4 iterations with and without Time-of-Flight (TOF) were compared to Q.Clear with beta\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta $$\end{document} = 4000. Recovery coefficients (RC), their coefficient of variation (COV), background variability (BV), contrast-to-noise ratio (CNR) and residual activity in the cold insert were evaluated. Increasing beta\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta $$\end{document} parameter lowered RC, COV and BV, while CNR was maximized at beta\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta $$\end{document} = 4000; further increase resulted in oversmoothing. For quantification purposes, beta\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta $$\end{document} = 1000-2000 could be more appropriate. Longer acquisition times resulted in larger CNR due to reduced image noise. Q.Clear reconstructions led to higher CNR than OSEM. A beta\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta $$\end{document} of 4000 was obtained for optimal image quality, although lower values could be considered for quantification purposes. An optimal acquisition time of 15 min was proposed considering its clinical use.
引用
收藏
页码:1397 / 1413
页数:17
相关论文
共 50 条
  • [41] Noise reduction using a Bayesian penalized-likelihood reconstruction algorithm on a time-of-flight PET-CT scanner
    Paulo R. R. V. Caribé
    M. Koole
    Yves D’Asseler
    B. Van Den Broeck
    S. Vandenberghe
    EJNMMI Physics, 6
  • [42] Evaluation of a Bayesian penalized likelihood reconstruction algorithm for low-count clinical 18F-FDG PET/CT
    Joost te Riet
    Sjoerd Rijnsdorp
    Mark J. Roef
    Albert J. Arends
    EJNMMI Physics, 6
  • [43] Quantitative fluctuation of a new Bayesian penalized-likelihood reconstruction algorithm in Ga-68 DOTATOC PET/CT.
    Ishimori, Takayoshi
    Nakamoto, Yuji
    Miyake, Kanae
    Saga, Tsuneo
    Togashi, Kaori
    JOURNAL OF NUCLEAR MEDICINE, 2018, 59
  • [44] Impact of the Bayesian penalized likelihood algorithm (Q.Clear®) in comparison with the OSEM reconstruction on low contrast PET hypoxic images
    Edgar Texte
    Pierrick Gouel
    Sébastien Thureau
    Justine Lequesne
    Bertrand Barres
    Agathe Edet-Sanson
    Pierre Decazes
    Pierre Vera
    Sébastien Hapdey
    EJNMMI Physics, 7
  • [45] Impact of the Bayesian penalized likelihood algorithm (Q.Clear®) in comparison with the OSEM reconstruction on low contrast PET hypoxic images
    Texte, Edgar
    Gouel, Pierrick
    Thureau, Sebastien
    Lequesne, Justine
    Barres, Bertrand
    Edet-Sanson, Agathe
    Decazes, Pierre
    Vera, Pierre
    Hapdey, Sebastien
    EJNMMI PHYSICS, 2020, 7 (01)
  • [46] Evaluation of a Bayesian penalized likelihood reconstruction algorithm for low-count clinical 18F-FDG PET/CT
    te Riet, Joost
    Rijnsdorp, Sjoerd
    Roef, Mark J.
    Arends, Albert J.
    EJNMMI PHYSICS, 2019, 6 (01)
  • [47] Noise reduction using a Bayesian penalized-likelihood reconstruction algorithm on a time-of-flight PET-CT scanner
    Caribe, Paulo R. R., V
    Koole, M.
    D'Asseler, Yves
    Van Den Broeck, B.
    Vandenberghe, S.
    EJNMMI PHYSICS, 2019, 6 (01)
  • [48] Assessment of acquisition protocols for routine imaging of Y-90 using PET/CT
    Carlier, Thomas
    Eugene, Thomas
    Bodet-Milin, Caroline
    Garin, Etienne
    Ansquer, Catherine
    Rousseau, Caroline
    Ferrer, Ludovic
    Barbet, Jacques
    Schoenahl, Frederic
    Kraeber-Bodere, Francoise
    EJNMMI RESEARCH, 2013, 3 : 1 - 12
  • [49] Analysis of penalized likelihood reconstruction for PET kinetic quantification
    Wang, Guobao
    Qi, Jinyi
    2007 IEEE NUCLEAR SCIENCE SYMPOSIUM CONFERENCE RECORD, VOLS 1-11, 2007, : 3283 - 3293
  • [50] Assessment of acquisition protocols for routine imaging of Y-90 using PET/CT
    Thomas Carlier
    Thomas Eugène
    Caroline Bodet-Milin
    Etienne Garin
    Catherine Ansquer
    Caroline Rousseau
    Ludovic Ferrer
    Jacques Barbet
    Frédéric Schoenahl
    Françoise Kraeber-Bodéré
    EJNMMI Research, 3