Y-90 PET/MR imaging optimization with a Bayesian penalized likelihood reconstruction algorithm

被引:0
|
作者
Calatayud-Jordan, Jose [1 ]
Carrasco-Vela, Nuria [2 ]
Chimeno-Hernandez, Jose [1 ]
Carles-Farina, Montserrat [3 ,4 ]
Olivas-Arroyo, Consuelo [1 ]
Bello-Arques, Pilar [1 ]
Perez-Enguix, Daniel [5 ]
Marti-Bonmati, Luis [3 ,4 ,5 ]
Torres-Espallardo, Irene [1 ,3 ,4 ]
机构
[1] La Fe Univ, Polytech Hosp, Dept Nucl Med, Ave Fernando Abril Martorell 106, Valencia 46026, Spain
[2] Clin Univ Hosp Valencia, Radiophys & Radiol Protect Serv, Ave Blasco Ibanez 17, Valencia 46010, Spain
[3] La Fe Univ, Hlth Res Inst Hosp La Fe IIS La Fe, Biomed Imaging Res Grp GIBI230, Ave Fernando Abril Martorell 106, Valencia 46026, Spain
[4] Polytech Hosp, Ave Fernando Abril Martorell 106, Valencia 46026, Spain
[5] La Fe Univ, Polytech Hosp, Dept Radiol, Ave Fernando Abril Martorell 106, Valencia 46026, Spain
关键词
Bayesian penalized likelihood; PET/MR; Q.Clear; Image quality; Radioembolization; Yttrium-90; EXPECTATION MAXIMIZATION; RADIOEMBOLIZATION; QUALITY; MICROSPHERES; THERAPY;
D O I
10.1007/s13246-024-01452-7
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Positron Emission Tomography (PET) imaging after 90\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$<^>{90}$$\end{document}Y liver radioembolization is used for both lesion identification and dosimetry. Bayesian penalized likelihood (BPL) reconstruction algorithms are an alternative to ordered subset expectation maximization (OSEM) with improved image quality and lesion detectability. The investigation of optimal parameters for 90\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$<^>{90}$$\end{document}Y image reconstruction of Q.Clear, a commercial BPL algorithm developed by General Electric (GE), in PET/MR is a field of interest and the subject of this study. The NEMA phantom was filled at an 8:1 sphere-to-background ratio. Acquisitions were performed on a PET/MR scanner for clinically relevant activities between 0.7 and 3.3 MBq/ml. Reconstructions with Q.Clear were performed varying the beta\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta $$\end{document} penalty parameter between 20 and 6000, the acquisition time between 5 and 20 min and pixel size between 1.56 and 4.69 mm. OSEM reconstructions of 28 subsets with 2 and 4 iterations with and without Time-of-Flight (TOF) were compared to Q.Clear with beta\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta $$\end{document} = 4000. Recovery coefficients (RC), their coefficient of variation (COV), background variability (BV), contrast-to-noise ratio (CNR) and residual activity in the cold insert were evaluated. Increasing beta\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta $$\end{document} parameter lowered RC, COV and BV, while CNR was maximized at beta\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta $$\end{document} = 4000; further increase resulted in oversmoothing. For quantification purposes, beta\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta $$\end{document} = 1000-2000 could be more appropriate. Longer acquisition times resulted in larger CNR due to reduced image noise. Q.Clear reconstructions led to higher CNR than OSEM. A beta\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta $$\end{document} of 4000 was obtained for optimal image quality, although lower values could be considered for quantification purposes. An optimal acquisition time of 15 min was proposed considering its clinical use.
引用
收藏
页码:1397 / 1413
页数:17
相关论文
共 50 条
  • [1] Optimization of Image Reconstruction for 90Y Selective Internal Radiotherapy on a Lutetium Yttrium Orthosilicate PET/CT System Using a Bayesian Penalized Likelihood Reconstruction Algorithm
    Rowley, Lisa M.
    Bradley, Kevin M.
    Boardman, Philip
    Hallam, Aida
    McGowan, Daniel R.
    JOURNAL OF NUCLEAR MEDICINE, 2017, 58 (04) : 658 - 664
  • [2] 64-Copper PET/CT Imaging using Bayesian Penalized Likelihood Reconstruction Algorithm
    Sheikhzadeh, P.
    Monsef, A.
    Ghafari, A.
    EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2022, 49 (SUPPL 1) : S599 - S599
  • [4] Optimization of Bayesian penalized likelihood reconstruction algorithm for [18F]flutemetamol amyloid PET images
    Fukuda, S.
    Miwa, K.
    Wagatsuma, K.
    Yakushiji, Y.
    Yamao, T.
    Kamitaka, Y.
    Nishikawa, N.
    Hasegawa, T.
    EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2022, 49 (SUPPL 1) : S607 - S607
  • [5] Optimization of Bayesian penalized likelihood reconstruction parameters for quantitative brain Positron Emission Tomography (PET) imaging
    Ribeiro, D.
    Hallett, W.
    Howes, O.
    McCutcheon, R.
    Nour, M.
    Tavares, A. A. S.
    EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2019, 46 (SUPPL 1) : S860 - S861
  • [6] Improving lesion detectability in PET imaging with a penalized likelihood reconstruction algorithm
    Wangerin, Kristen A.
    Ahn, Sangtae
    Ross, Steven G.
    Kinahan, Paul E.
    Manjeshwar, Ravindra M.
    MEDICAL IMAGING 2015: IMAGE PERCEPTION, OBSERVER PERFORMANCE, AND TECHNOLOGY ASSESSMENT, 2015, 9416
  • [7] Quantitative PET Imaging of Y-90
    Bailey, D. L.
    Willowson, K. P.
    Forwood, N. J.
    EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2012, 39 : S254 - S254
  • [8] Phantom study to determine optimal PET reconstruction parameters for PET/MR imaging of Y-90 microspheres following radioembolization
    Maughan, Nichole M.
    Eldib, Mootaz
    Conti, Maurizio
    Knesaurek, Karin
    Faul, David
    Parikh, Parag J.
    Fayad, Zahi A.
    Laforest, Richard
    BIOMEDICAL PHYSICS & ENGINEERING EXPRESS, 2016, 2 (01):
  • [9] Phantom Study to Determine Optimal PET Reconstruction Parameters for PET/MR Imaging of Y-90 Microspheres Following Radioembolization
    Maughan, N.
    Conti, M.
    Parikh, P.
    Faul, D.
    Laforest, R.
    MEDICAL PHYSICS, 2015, 42 (06) : 3221 - 3221
  • [10] Suppression of edge artifacts using a Bayesian penalized-likelihood reconstruction algorithm for oncological PET/CT imaging
    Yamaguchi, Shotaro
    Wagatsuma, Kei
    Miwa, Kenta
    Ishii, Kenji
    Inoue, Kazumasa
    Fukushi, Masahiro
    JOURNAL OF NUCLEAR MEDICINE, 2017, 58