Uncertainty quantification in logistic regression using random fuzzy sets and belief functions

被引:0
|
作者
Denoeux, Thierry [1 ,2 ]
机构
[1] Univ Technol Compiegne, CNRS, UMR 7253 Heudiasyc, Rue Roger Couttolenc,CS 60319, F-60203 Compiegne, France
[2] Inst Univ France, Paris, France
关键词
Dempster-Shafer theory; Evidence theory; Possibility distribution; Statistical inference; Classification; Machine learning; CLASSIFICATION; PROBABILITIES; CALIBRATION;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Evidential likelihood-based inference is a new approach to statistical inference in which the relative likelihood function is interpreted as a possibility distribution. By expressing new data as a function of the parameter and a random variable with known probability distribution, one then defines a random fuzzy set and an associated predictive belief function representing uncertain knowledge about future observations. In this paper, this approach is applied to binomial and multinomial regression. In the binomial case, the predictive belief function can be computed by numerically integrating the possibility distribution of the posterior probability. In the multinomial case, the solution is obtained by a combination of constrained nonlinear optimization and Monte Carlo simulation. In both cases, computations can be considerably simplified using a normal approximation to the relative likelihood. Numerical experiments show that decision rules based on predictive belief functions make it possible to reach lower error rates for different rejection rates, as compared to decisions based on posterior probabilities.
引用
收藏
页数:25
相关论文
共 50 条
  • [31] Uncertainty quantification for random domains using periodic random variables
    Harri Hakula
    Helmut Harbrecht
    Vesa Kaarnioja
    Frances Y. Kuo
    Ian H. Sloan
    Numerische Mathematik, 2024, 156 : 273 - 317
  • [32] Constructing Belief Functions Using the Principle of Minimum Uncertainty
    He, Yanyan
    Hussaini, M. Yousuff
    2020 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE), 2020,
  • [33] Econometric Forecasting Using Linear Regression and Belief Functions
    Kanjanatarakul, Orakanya
    Lertpongpiroon, Philai
    Singkharat, Sombat
    Sriboonchitta, Songsak
    BELIEF FUNCTIONS: THEORY AND APPLICATIONS (BELIEF 2014), 2014, 8764 : 304 - 312
  • [34] Using Binary Logistic Regression Coefficients for the Dynamic Quantification of Comorbidities
    Zikos, Dimitrios
    Vandeliwala, Ismail
    8TH ACM INTERNATIONAL CONFERENCE ON PERVASIVE TECHNOLOGIES RELATED TO ASSISTIVE ENVIRONMENTS (PETRA 2015), 2015,
  • [35] Combining interval-valued belief functions in the framework of intuitionistic fuzzy sets
    Li X.
    Liu J.
    Song Y.
    Xitong Gongcheng Lilun yu Shijian/System Engineering Theory and Practice, 2019, 39 (11): : 2906 - 2917
  • [36] Interpretable Multiattribute Predictive Analysis Model Based on Rough Fuzzy Sets and Logistic Regression
    Kang, Yun
    Yu, Bin
    Xu, Zeshui
    IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2023, 31 (10) : 3522 - 3532
  • [37] A nonparametric belief propagation method for uncertainty quantification with applications to flow in random porous media
    Chen, Peng
    Zabaras, Nicholas
    JOURNAL OF COMPUTATIONAL PHYSICS, 2013, 250 : 616 - 643
  • [38] Decision Making with Uncertainty Using Hesitant Fuzzy Sets
    Shahzad Faizi
    Tabasam Rashid
    Wojciech Sałabun
    Sohail Zafar
    Jarosław Wątróbski
    International Journal of Fuzzy Systems, 2018, 20 : 93 - 103
  • [39] Decision Making with Uncertainty Using Hesitant Fuzzy Sets
    Faizi, Shahzad
    Rashid, Tabasam
    Salabun, Wojciech
    Zafar, Sohail
    Watrobski, Jaroslaw
    INTERNATIONAL JOURNAL OF FUZZY SYSTEMS, 2018, 20 (01) : 93 - 103
  • [40] AN EFFICIENT METHOD FOR UNCERTAINTY PROPAGATION USING FUZZY SETS
    Chen, Xiaoxiao
    He, Yanyan
    Xiu, Dongbin
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2015, 37 (06): : A2488 - A2507