Uncertainty quantification in logistic regression using random fuzzy sets and belief functions

被引:0
|
作者
Denoeux, Thierry [1 ,2 ]
机构
[1] Univ Technol Compiegne, CNRS, UMR 7253 Heudiasyc, Rue Roger Couttolenc,CS 60319, F-60203 Compiegne, France
[2] Inst Univ France, Paris, France
关键词
Dempster-Shafer theory; Evidence theory; Possibility distribution; Statistical inference; Classification; Machine learning; CLASSIFICATION; PROBABILITIES; CALIBRATION;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Evidential likelihood-based inference is a new approach to statistical inference in which the relative likelihood function is interpreted as a possibility distribution. By expressing new data as a function of the parameter and a random variable with known probability distribution, one then defines a random fuzzy set and an associated predictive belief function representing uncertain knowledge about future observations. In this paper, this approach is applied to binomial and multinomial regression. In the binomial case, the predictive belief function can be computed by numerically integrating the possibility distribution of the posterior probability. In the multinomial case, the solution is obtained by a combination of constrained nonlinear optimization and Monte Carlo simulation. In both cases, computations can be considerably simplified using a normal approximation to the relative likelihood. Numerical experiments show that decision rules based on predictive belief functions make it possible to reach lower error rates for different rejection rates, as compared to decisions based on posterior probabilities.
引用
收藏
页数:25
相关论文
共 50 条
  • [21] Random feature selection using random subspace logistic regression
    Wichitaksorn, Nuttanan
    Kang, Yingyue
    Zhang, Faqiang
    EXPERT SYSTEMS WITH APPLICATIONS, 2023, 217
  • [22] CONSTRAINTS ON BELIEF FUNCTIONS IMPOSED BY FUZZY RANDOM-VARIABLES
    ROMER, C
    KANDEL, A
    IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS, 1995, 25 (01): : 86 - 99
  • [23] An uncertainty quantification framework for logistic regression based geospatial natural hazard modeling
    Zhan, Weiwei
    Baise, Laurie G.
    Moaveni, Babak
    ENGINEERING GEOLOGY, 2023, 324
  • [24] INTERPRETATION OF MEMBERSHIP FUNCTIONS OF FUZZY SETS IN TERMS OF PLAUSIBILITY AND BELIEF.
    de Feriet, J.Kampe
    1982, : 93 - 98
  • [25] Generalization of belief and plausibility functions to fuzzy sets based on the Sugeno integral
    Hwang, Chao-Ming
    Yang, Miin-Shen
    INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS, 2007, 22 (11) : 1215 - 1228
  • [26] Belief and plausibility functions of type-2 fuzzy rough sets
    Lu, Juan
    Li, De-Yu
    Zhai, Yan-Hui
    Bai, He-Xiang
    INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 2019, 105 : 194 - 216
  • [27] Spatial modelling of gully erosion using evidential belief function, logistic regression, and a new ensemble of evidential belief function-logistic regression algorithm
    Arabameri, Alireza
    Pradhan, Biswajeet
    Rezaei, Khalil
    Yamani, Mojtaba
    Pourghasemi, Hamid Reza
    Lombardo, Luigi
    LAND DEGRADATION & DEVELOPMENT, 2018, 29 (11) : 4035 - 4049
  • [28] UNCERTAINTY QUANTIFICATION USING PERIODIC RANDOM VARIABLES
    Kaarnioja, V.
    Kuo, F. Y.
    Sloan, I. H.
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2020, 58 (02) : 1068 - 1091
  • [29] Uncertainty quantification for random domains using periodic random variables
    Hakula, Harri
    Harbrecht, Helmut
    Kaarnioja, Vesa
    Kuo, Frances Y.
    Sloan, Ian H.
    NUMERISCHE MATHEMATIK, 2024, 156 (01) : 273 - 317
  • [30] Uncertainty quantification for random domains using periodic random variables
    Department of Mathematics and Systems Analysis, Aalto University, P.O. Box 11100, Aalto
    00076, Finland
    不详
    4051, Switzerland
    不详
    14195, Germany
    不详
    NSW
    2052, Australia
    arXiv,