Intelligent diagnosis method for machine faults based on federated transfer learning

被引:9
|
作者
Li, Zhinong [1 ]
Li, Zedong [1 ]
Gu, Fengshou [2 ]
机构
[1] Nanchang Hangkong Univ, Key Lab Nondestruct Testing, Minist Educ, Nanchang 330063, Peoples R China
[2] Univ Huddersfield, Ctr Efficiency & Performance Engn, Hudders field HD1 3DH, England
基金
中国国家自然科学基金;
关键词
Fault diagnosis; Federated learning; Transfer learning; Model fusion; Deep learning;
D O I
10.1016/j.asoc.2024.111922
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Intelligent fault diagnosis model based on federated learning can effectively solve the problem of fault data privacy and sharing, and ignores the difference of fault data distribution. Transfer learning can avoid the difference of data distribution. Combining the advantages of transfer learning and federated learning, a fault diagnosis model with data privacy based on federated transfer learning is proposed to achieve cross-domain fault diagnosis without sharing the data. In the constructed model, the local models on the client are firstly established based on deep convolution neural network to extract the feature of the source and target domains. The alignment loss is introduced to minimize the similar feature distribution differences among different source domains and target domain. The parameters of local models are fused and updated to generate a global model, which can not only identify the fault types in the target domain, but also retain the ability to recognize the fault types in the source domain. The two experiments, including different bearings with same feature distribution and label and the bearing and planetary gear in the same transmission system with similar feature distribution, are used to verify the effectiveness of the proposed model. The experiments suggest that the fault diagnosis model based on federated transfer learning can reduce the difference of the newly added fault type data distribution, and can accurately recognize the fault data of the source domain and target domain. Compared with the traditional diagnosis model based on deep learning, transfer learning and federated learning, the proposed model can effective perform the cross-domain fault diagnosis with data privacy.
引用
收藏
页数:18
相关论文
共 50 条
  • [31] A method of faults intelligent diagnosis based on neural network and expert system for radar
    Shang, CX
    Li, HP
    Wang, XN
    Huang, YH
    ISTM/2003: 5TH INTERNATIONAL SYMPOSIUM ON TEST AND MEASUREMENT, VOLS 1-6, CONFERENCE PROCEEDINGS, 2003, : 901 - 904
  • [32] Curriculum-Based Federated Learning for Machine Fault Diagnosis With Noisy Labels
    Sun, Wenjun
    Yan, Ruqiang
    Jin, Ruibing
    Zhao, Rui
    Chen, Zhenghua
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2024, 20 (12) : 13820 - 13830
  • [33] Federated learning based method for intelligent computing with privacy preserving in edge computing
    Liu Q.
    Xu X.
    Zhang X.
    Dou W.
    Jisuanji Jicheng Zhizao Xitong/Computer Integrated Manufacturing Systems, CIMS, 2021, 27 (09): : 2604 - 2610
  • [34] Fault diagnosis of intelligent distribution system based on privacy-enhanced federated learning
    Chen, Yifang
    Sun, Zhiqing
    Xuan, Yi
    Lou, Yinan
    Wang, Qifeng
    Guo, Fanghong
    High Technology Letters, 2024, 30 (04) : 424 - 432
  • [35] Fault diagnosis of intelligent distribution system based on privacy-enhanced federated learning
    陈益芳
    SUN Zhiqing
    XUAN Yi
    LOU Yinan
    WANG Qifeng
    GUO Fanghong
    High Technology Letters, 2024, 30 (04) : 424 - 432
  • [36] Federated Transfer Learning Method for Privacy-preserving Collaborative Intelligent Machinery Fault Diagnostics
    Li X.
    Fu C.
    Lei Y.
    Li N.
    Yang B.
    Jixie Gongcheng Xuebao/Journal of Mechanical Engineering, 2023, 59 (06): : 1 - 9
  • [37] A personalized federated meta-learning method for intelligent and privacy-preserving fault diagnosis
    Zhang, Xiangjie
    Li, Chuanjiang
    Han, Changkun
    Li, Shaobo
    Feng, Yixiong
    Wang, Haoyu
    Cui, Zuo
    Gryllias, Konstantinos
    ADVANCED ENGINEERING INFORMATICS, 2024, 62
  • [38] Federated transfer learning with consensus knowledge distillation for intelligent fault diagnosis under data privacy preserving
    Xue, Xingan
    Zhao, Xiaoping
    Zhang, Yonghong
    Ma, Mengyao
    Bu, Can
    Peng, Peng
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2024, 35 (01)
  • [39] A Novel Federated Transfer Learning Framework for Intelligent Diagnosis of Insulation Defects in Gas-Insulated Switchgear
    Wang, Yanxin
    Yan, Jing
    Yang, Zhou
    Dai, Yuannan
    Wang, Jianhua
    Geng, Yingsan
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2022, 71
  • [40] Federated Transfer Learning Strategy: A Novel Cross-Device Fault Diagnosis Method Based on Repaired Data
    Yan, Zhenhao
    Sun, Jiachen
    Zhang, Yixiang
    Liu, Lilan
    Gao, Zenggui
    Chang, Yuxing
    SENSORS, 2023, 23 (16)