Intelligent diagnosis method for machine faults based on federated transfer learning

被引:9
|
作者
Li, Zhinong [1 ]
Li, Zedong [1 ]
Gu, Fengshou [2 ]
机构
[1] Nanchang Hangkong Univ, Key Lab Nondestruct Testing, Minist Educ, Nanchang 330063, Peoples R China
[2] Univ Huddersfield, Ctr Efficiency & Performance Engn, Hudders field HD1 3DH, England
基金
中国国家自然科学基金;
关键词
Fault diagnosis; Federated learning; Transfer learning; Model fusion; Deep learning;
D O I
10.1016/j.asoc.2024.111922
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Intelligent fault diagnosis model based on federated learning can effectively solve the problem of fault data privacy and sharing, and ignores the difference of fault data distribution. Transfer learning can avoid the difference of data distribution. Combining the advantages of transfer learning and federated learning, a fault diagnosis model with data privacy based on federated transfer learning is proposed to achieve cross-domain fault diagnosis without sharing the data. In the constructed model, the local models on the client are firstly established based on deep convolution neural network to extract the feature of the source and target domains. The alignment loss is introduced to minimize the similar feature distribution differences among different source domains and target domain. The parameters of local models are fused and updated to generate a global model, which can not only identify the fault types in the target domain, but also retain the ability to recognize the fault types in the source domain. The two experiments, including different bearings with same feature distribution and label and the bearing and planetary gear in the same transmission system with similar feature distribution, are used to verify the effectiveness of the proposed model. The experiments suggest that the fault diagnosis model based on federated transfer learning can reduce the difference of the newly added fault type data distribution, and can accurately recognize the fault data of the source domain and target domain. Compared with the traditional diagnosis model based on deep learning, transfer learning and federated learning, the proposed model can effective perform the cross-domain fault diagnosis with data privacy.
引用
收藏
页数:18
相关论文
共 50 条
  • [21] Diagnosis of Scan Chain Faults Based-on Machine-Learning
    Lim, Hyeonchan
    Kim, Tae Hyun
    Kim, Seunghwan
    Kang, Sungho
    2020 17TH INTERNATIONAL SOC DESIGN CONFERENCE (ISOCC 2020), 2020, : 57 - 58
  • [22] Federated Transfer Learning for Bearing Fault Diagnosis With Discrepancy-Based Weighted Federated Averaging
    Chen, Junbin
    Li, Jipu
    Huang, Ruyi
    Yue, Ke
    Chen, Zhuyun
    Li, Weihua
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2022, 71
  • [23] An Intelligent Antenna Synthesis Method Based on Machine Learning
    Shi, Dan
    Lian, Cheng
    Cui, Keyi
    Chen, Yazhou
    Liu, Xiaoyong
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2022, 70 (07) : 4965 - 4976
  • [24] Active federated transfer algorithm based on broad learning for fault diagnosis
    Liu, Guokai
    Shen, Weiming
    Gao, Liang
    Kusiak, Andrew
    MEASUREMENT, 2023, 208
  • [25] Intelligent Diagnosis of Alzheimer's Disease Based on Machine Learning
    Li, Mingyang
    Liu, Hongyu
    Li, Yixuan
    Wang, Zejun
    Yuan, Yuan
    Dai, Honglin
    PROCEEDINGS OF 2023 4TH INTERNATIONAL SYMPOSIUM ON ARTIFICIAL INTELLIGENCE FOR MEDICINE SCIENCE, ISAIMS 2023, 2023, : 456 - 462
  • [26] Machine Learning based Intelligent Diagnosis of Orthodontics: A comprehensive review
    Iwin Thanakumar Joseph, S.
    Sarveshwaran, Velliangiri
    Vijayakumar, K.
    Raj, S Benson Edwin
    Elngar, Ahmed A
    Devadurai, Anand
    Proceedings of 3rd IEEE International Conference on Computational Intelligence and Knowledge Economy, ICCIKE 2023, 2023, : 257 - 262
  • [27] The intelligent fault diagnosis for composite systems based on machine learning
    Wu, Li-Hua
    Jiang, Yun-Fei
    Huang, Wei
    Chen, Ai-Xiang
    Zhang, Xue-Nong
    PROCEEDINGS OF 2006 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-7, 2006, : 571 - +
  • [28] Federated Learning: A Distributed Shared Machine Learning Method
    Hu, Kai
    Li, Yaogen
    Xia, Min
    Wu, Jiasheng
    Lu, Meixia
    Zhang, Shuai
    Weng, Liguo
    COMPLEXITY, 2021, 2021
  • [29] A Disease Diagnosis Method Based on Machine Learning
    Li, Xinrong
    Xie, Xiaolan
    ICIIP'18: PROCEEDINGS OF THE 3RD INTERNATIONAL CONFERENCE ON INTELLIGENT INFORMATION PROCESSING, 2018, : 184 - 189
  • [30] Intelligent Machine Fault Diagnosis Using Convolutional Neural Networks and Transfer Learning
    Zhang, Wentao
    Zhang, Ting
    Cui, Guohua
    Pan, Ying
    IEEE ACCESS, 2022, 10 : 50959 - 50973