Study of the flow characteristics of the dense bed and its enhancing effect on coal particles separation by CFD-DEM applied in Teeter bed separator

被引:0
|
作者
Liu, Junli [1 ]
Zhu, Xueshuai [2 ]
Lv, Fakui [1 ]
Ye, Guichuan [3 ]
Yao, Geng [1 ]
Qi, Xin [1 ]
Cong, Xingshun [1 ]
机构
[1] Zaozhuang Univ, Coll Chem Chem Engn & Mat Sci, Zaozhuang 277160, Shandong, Peoples R China
[2] China Univ Min & Technol Beijing, Sch Chem & Environm Engn, Beijing, Peoples R China
[3] Taiyuan Univ Technol, Coll Min Engn, Taiyuan, Peoples R China
基金
中国国家自然科学基金;
关键词
Teeter bed separator; CFD-DEM simulation; flow characteristics of the dense bed; particle separation; LIQUID-FLUIDIZED-BEDS; CLASSIFICATION; HYDRODYNAMICS; SIMULATION; RECOVERY; VELOCITY; MODEL; DRAG;
D O I
10.1080/19392699.2024.2390507
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Teeter bed separator (TBS) plays an important role in coal and mineral fines beneficiation. It is believed that a favorable dense concentrated bed is the key to ensuring the effective particle separation. This paper mainly presents the investigation of the flow characteristics of the dense bed and its enhancing effect on particle fines separation by CFD-DEM to reveal the complex separation behavior of TBS. First, the enhancing effect of the dense bed for separating real fine coal is experimentally studied. The specific simulation for particle motion is further verified by the literature experiment. The simulated dynamic behavior of the mismatch-prone particles reveals that the dense bed in the concentration range of 20-47% could promote particle separation by density. The fact is that a certain velocity difference is generated between mismatch-prone particles, and the smaller heavier particles move faster than the larger lighter particles. It is especially beneficial for separating fine coal material in TBS. The enhancing mechanism of the dense bed is further revealed by analyzing the mismatch-prone particle forces of collision and fluid drag force. Comprehensively, the appropriate bed concentration of 35-45% is suggested for the actual TBS operation.
引用
收藏
页数:21
相关论文
共 50 条
  • [41] CFD-DEM Simulation Study on Heat and Mass Transfer of Wheat Particles in Gas-Solid Fluidized Bed
    Yang, Kaimin
    Li, Xin
    Wang, Yuancheng
    Du, Xinming
    JOURNAL OF FOOD PROCESS ENGINEERING, 2025, 48 (01)
  • [42] CFD-DEM study of impacts of the porous distributor medium on fluidization characteristics of a 2D-fluidized bed
    Wang, Fei
    Zeng, Yishan
    Yan, Hao
    PARTICUOLOGY, 2024, 87 : 54 - 73
  • [43] A CFD-DEM study of a two-joint spouting flow pattern in a multiple rectangular spout fluidized bed
    Yue, Yuanhe
    Zhao, Weiwei
    Sun, Xiaolu
    Che, Hanqiao
    Duan, Runzhe
    POWDER TECHNOLOGY, 2024, 435
  • [44] CFD-DEM study on fluidization characteristics of gas-solid fluidized bed reactor containing ternary mixture
    Zhang, Hao
    Qiao, Wanbing
    An, Xizhong
    Ye, Xinglian
    Chen, Jiang
    POWDER TECHNOLOGY, 2022, 401
  • [45] CFD-DEM study on the mixing characteristics of binary particle systems in a fluidized bed of refuse-derived fuel
    Wang, Li-Jun
    Wei, Guang-Chao
    Duan, Shu-Ping
    Hou, Qin-Fu
    PARTICULATE SCIENCE AND TECHNOLOGY, 2019, 37 (01) : 51 - 59
  • [46] CFD-DEM study of reactive gas-solid flows with cohesive particles in a high temperature polymerization fluidized bed
    Lei, He
    Zhu, Li -Tao
    Luo, Zheng-Hong
    CHEMICAL ENGINEERING SCIENCE, 2023, 268
  • [47] CFD-DEM study of the effect of cyclone arrangements on the gas-solid flow dynamics in the full-loop circulating fluidized bed
    Wang, Shuai
    Luo, Kun
    Hu, Chenshu
    Fan, Jianren
    CHEMICAL ENGINEERING SCIENCE, 2017, 172 : 199 - 215
  • [48] CFD-DEM study of the effect of particle density distribution on the multiphase flow and performance of dense medium cyclone
    Chu, K. W.
    Wang, B.
    Yu, A. B.
    Vince, A.
    Barnett, G. D.
    Barnett, P. J.
    MINERALS ENGINEERING, 2009, 22 (11) : 893 - 909
  • [49] Effect of interparticle force on gas dynamics in a bubbling gas-solid fluidized bed: A CFD-DEM study
    Okhovat-Alavian, S. M.
    Shabanian, J.
    Norouzi, H. R.
    Zarghami, R.
    Chaouki, J.
    Mostoufi, N.
    CHEMICAL ENGINEERING RESEARCH & DESIGN, 2019, 152 : 348 - 362
  • [50] CFD-DEM study of the effect of ring baffles on system performance of a full-loop circulating fluidized bed
    Wang, Shuai
    Luo, Kun
    Hu, Chenshu
    Fan, Jianren
    CHEMICAL ENGINEERING SCIENCE, 2019, 196 : 130 - 144