Study of the flow characteristics of the dense bed and its enhancing effect on coal particles separation by CFD-DEM applied in Teeter bed separator

被引:0
|
作者
Liu, Junli [1 ]
Zhu, Xueshuai [2 ]
Lv, Fakui [1 ]
Ye, Guichuan [3 ]
Yao, Geng [1 ]
Qi, Xin [1 ]
Cong, Xingshun [1 ]
机构
[1] Zaozhuang Univ, Coll Chem Chem Engn & Mat Sci, Zaozhuang 277160, Shandong, Peoples R China
[2] China Univ Min & Technol Beijing, Sch Chem & Environm Engn, Beijing, Peoples R China
[3] Taiyuan Univ Technol, Coll Min Engn, Taiyuan, Peoples R China
基金
中国国家自然科学基金;
关键词
Teeter bed separator; CFD-DEM simulation; flow characteristics of the dense bed; particle separation; LIQUID-FLUIDIZED-BEDS; CLASSIFICATION; HYDRODYNAMICS; SIMULATION; RECOVERY; VELOCITY; MODEL; DRAG;
D O I
10.1080/19392699.2024.2390507
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Teeter bed separator (TBS) plays an important role in coal and mineral fines beneficiation. It is believed that a favorable dense concentrated bed is the key to ensuring the effective particle separation. This paper mainly presents the investigation of the flow characteristics of the dense bed and its enhancing effect on particle fines separation by CFD-DEM to reveal the complex separation behavior of TBS. First, the enhancing effect of the dense bed for separating real fine coal is experimentally studied. The specific simulation for particle motion is further verified by the literature experiment. The simulated dynamic behavior of the mismatch-prone particles reveals that the dense bed in the concentration range of 20-47% could promote particle separation by density. The fact is that a certain velocity difference is generated between mismatch-prone particles, and the smaller heavier particles move faster than the larger lighter particles. It is especially beneficial for separating fine coal material in TBS. The enhancing mechanism of the dense bed is further revealed by analyzing the mismatch-prone particle forces of collision and fluid drag force. Comprehensively, the appropriate bed concentration of 35-45% is suggested for the actual TBS operation.
引用
收藏
页数:21
相关论文
共 50 条
  • [31] CFD-DEM Investigation on Flow and Temperature Distribution of Ceria Particles in A Beam-Down Fluidized Bed Reactor
    Bellan, Selvan
    Matsubara, Koji
    Cho, Hyun Seok
    Gokon, Nobuyuki
    Kodama, Tatsuya
    INTERNATIONAL CONFERENCE ON CONCENTRATING SOLAR POWER AND CHEMICAL ENERGY SYSTEMS (SOLARPACES 2017), 2018, 2033
  • [32] DEM study of flow characteristics of wet cohesive particles in packed bed
    Cui, Xiyuan
    Liu, Xu
    Gui, Nan
    Yang, Xingtuan
    Tu, Jiyuan
    Jiang, Shengyao
    ANNALS OF NUCLEAR ENERGY, 2021, 163 (163)
  • [33] CFD-DEM Modeling and Correlation Analysis between Flow Behaviors and Heat Transfer Characteristics of Bidispersed Particles in a Spouted Pulsed Fluidized Bed
    Qian, Binhui
    Luan, Junyuan
    Cui, Xiaoou
    Li, Donghui
    Han, Luchang
    Zhou, Yefeng
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2025, 64 (03) : 1792 - 1808
  • [34] CFD-DEM study of a spouted bed operating in dense-phase, transition, and jet-spouting regimes
    Almeida, Natalia P.
    Santos, Kassia G.
    Duarte, Claudio R.
    Barrozo, Marcos A. S.
    DRYING TECHNOLOGY, 2022, 40 (15) : 3215 - 3230
  • [35] Particle flow characteristics in a gas-solid fluidized bed: a microscopic perspective by coupled CFD-DEM approach
    Zhao, Zhenjiang
    Bai, Ling
    Shi, Weidong
    Li, Linjian
    El-Emam, Mahmoud A.
    Agarwal, Ramesh
    Zhou, Ling
    COMPUTATIONAL PARTICLE MECHANICS, 2024, 11 (03) : 1375 - 1389
  • [36] CFD-DEM numerical simulation of flow characteristics in stagnation zone of spouted bed based on dynamic dual grid
    Wang H.
    Ji L.
    Meng F.
    Li B.
    Yang J.
    Chen H.
    Huagong Xuebao/CIESC Journal, 2021, 72 (11): : 5563 - 5572
  • [37] Influences of operating parameters on the fluidized bed coal gasification process: A coarse-grained CFD-DEM study
    Hu, Chenshu
    Luo, Kun
    Wang, Shuai
    Sun, Liyan
    Fan, Jianren
    CHEMICAL ENGINEERING SCIENCE, 2019, 195 : 693 - 706
  • [38] Numerical simulation of flow behavior of particles in an inverse liquid-solid fluidized bed with a jet using CFD-DEM
    Wang, Shuyan
    Wang, Xinxue
    Wang, Xu
    Shao, Baoli
    Ma, Yimei
    Sun, Qiji
    Zhao, Jian
    JOURNAL OF THE TAIWAN INSTITUTE OF CHEMICAL ENGINEERS, 2018, 82 : 214 - 225
  • [39] CFD-DEM study on mixing characteristics of ZrO2 particles using the fluidized bed-chemical vapor deposition method
    Wang, Liya
    Zhang, Jianhui
    Zha, Xiao
    MATERIALS TODAY COMMUNICATIONS, 2022, 33
  • [40] CFD-DEM simulation of distribution and agglomeration characteristics of bendable chain-like biomass particles in a fluidized bed reactor
    Gu, Conghui
    Zhao, Haichao
    Xu, Bingyang
    Yang, Junjie
    Zhang, Jun
    Du, Mingpu
    Liu, Yuan
    Tikhankin, Dmitriy
    Yuan, Zhulin
    FUEL, 2023, 340