Experimental and theoretical studies on self-diffusion in amorphous germanium

被引:1
|
作者
Boeckendorf, Tim [1 ]
Kirschbaum, Jan [1 ]
Kipke, Felix [1 ]
Bougeard, Dominique [2 ]
Hansen, John Lundsgaard [3 ]
Larsen, Arne Nylandsted [3 ]
Posselt, Matthias [4 ]
Bracht, Hartmut [1 ]
机构
[1] Univ Munster, Inst Mat Phys, D-48149 Munster, Germany
[2] Univ Regensburg, Inst Expt & Angew Phys, D-93040 Regensburg, Germany
[3] Aarhus Univ, Dept Phys & Astron, D-8000 Aarhus, Denmark
[4] Helmholtz Zentrum Dresden Rossendorf, D-01328 Dresden, Germany
关键词
CRYSTALLIZATION; KINETICS; SILICON;
D O I
10.1063/5.0183578
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Self-diffusion in amorphous germanium is studied at temperatures between 325 and 370 degrees C utilizing amorphous isotopically controlled germanium multilayer structures. The isotope multilayer is epitaxially grown on a single crystalline germanium-on-insulator structure by means of molecular beam epitaxy and subsequently amorphized by self-ion implantation. After heat treatment, the diffusional broadening of the isotope structure is measured with time-of-flight secondary ion mass spectrometry. The temperature dependence of self-diffusion is accurately described by the Arrhenius equation with the activation enthalpy Q = (2.21 +/- 0.12) eV and pre-exponential factor D-0 = (2.32(-2.10)(+20.79)) cm(2) s(-1). The activation enthalpy equals the activation enthalpy of solid phase epitaxial recrystallization (SPER). This agreement suggests that self-diffusion in amorphous germanium is similar to SPER, also mainly mediated by local bond rearrangements. Classical molecular dynamics simulations with a modified Stillinger-Weber-type interatomic potential yield results that are consistent with the experimental data and support the proposed atomic mechanism.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Atomic mechanisms of self-diffusion in amorphous silicon
    Posselt, Matthias
    Bracht, Hartmut
    Ghorbani-Asl, Mahdi
    Radic, Drazen
    AIP ADVANCES, 2022, 12 (11)
  • [22] Self-diffusion of iron in amorphous iron nitride
    Gupta, M
    Gupta, A
    Rajagopalan, S
    Tyagi, AK
    PHYSICAL REVIEW B, 2002, 65 (21) : 2142041 - 2142046
  • [23] Self-diffusion in germanium isotope multilayers at low temperatures
    Hueger, E.
    Tietze, U.
    Lott, D.
    Bracht, H.
    Bougeard, D.
    Haller, E. E.
    Schmidt, H.
    APPLIED PHYSICS LETTERS, 2008, 93 (16)
  • [24] Charge states of vacancies in germanium investigated by simultaneous observation of germanium self-diffusion and arsenic diffusion
    Naganawa, Miki
    Shimizu, Yasuo
    Uematsu, Masashi
    Itoh, Kohei M.
    Sawano, Kentarou
    Shiraki, Yasuhiro
    Haller, Eugene E.
    APPLIED PHYSICS LETTERS, 2008, 93 (19)
  • [25] Theoretical investigation of the self-diffusion on Au(100)
    Poetting, K.
    Jacob, T.
    Schmickler, W.
    HIGH PERFORMANCE COMPUTING IN SCIENCE AND ENGINEERING '06, 2007, : 171 - 185
  • [26] THEORETICAL ANALYSIS OF REGULARITIES IN SURFACE SELF-DIFFUSION
    GAL, VV
    BORISOV, VT
    PHYSICA STATUS SOLIDI A-APPLIED RESEARCH, 1973, 15 (01): : 39 - 49
  • [27] SELF-DIFFUSION STUDIES OF DELTA PLUTONIUM
    TATE, RE
    CRAMER, EM
    TRANSACTIONS OF THE METALLURGICAL SOCIETY OF AIME, 1964, 230 (04): : 639 - &
  • [28] Self-Diffusion in Amorphous Silicon by Local Bond Rearrangements
    Kirschbaum, J.
    Teuber, T.
    Donner, A.
    Radek, M.
    Bougeard, D.
    Boettger, R.
    Hansen, J. Lundsgaard
    Larsen, A. Nylandsted
    Posselt, M.
    Bracht, H.
    PHYSICAL REVIEW LETTERS, 2018, 120 (22)
  • [29] Doping dependence of self-diffusion in germanium and the charge states of vacancies
    Suedkamp, T.
    Bracht, H.
    Impellizzeri, G.
    Hansen, J. Lundsgaard
    Larsen, A. Nylandsted
    Haller, E. E.
    APPLIED PHYSICS LETTERS, 2013, 102 (24)
  • [30] THERMAL SHRINKAGE OF DISLOCATION LOOPS AND THE MECHANISM OF SELF-DIFFUSION IN GERMANIUM
    HIRATA, M
    KIRITANI, M
    PHYSICA B & C, 1983, 116 (1-3): : 623 - 628