Efficient Subquadratic Space Complexity Digit-Serial Multipliers over GF(2m) based on Bivariate Polynomial Basis Representation

被引:0
|
作者
Lee, Chiou-Yng [1 ]
Xie, Jiafeng [2 ]
机构
[1] Lunghwa Univ Sci & Technol, Comp Informat & Network Engn, Taoyuan 333, Taiwan
[2] Villanova Univ, Elect & Comp Engn, Villanova, PA 19010 USA
关键词
LOW-AREA; PARALLEL;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Digit-serial finite field multipliers over GF(2(m)) with subquadratic space complexity are critical components to many applications such as elliptic curve cryptography. In this paper, we propose a pair of novel digit-serial multipliers based on bivariate polynomial basis (BPB). Firstly, we have proposed a novel digit-serial BPB multiplication algorithm based on a new decomposition strategy. Secondly, the proposed algorithm is properly mapped into a pair of pipelined and non-pipelined digit-serial multipliers. Lastly, through the detailed complexity analysis and comparison, the proposed designs are found to have less area-time complexities than the competing ones.
引用
收藏
页码:253 / 258
页数:6
相关论文
共 50 条
  • [21] ASIC Implementation and Power Analysis of Digit-Serial Polynomial Basis Multipliers in GF (2233) for Different Digit Sizes
    Namin, S-hashemi
    Muscedere, R.
    Ahmadi, M.
    INTERNATIONAL CONFERENCE ON ENVIRONMENTAL SCIENCE AND ENERGY ENGINEERING (ICESEE 2015), 2015, : 180 - 185
  • [22] Digit-serial systolic multiplier for finite fields GF(2m)
    Guo, JH
    Wang, CL
    IEE PROCEEDINGS-COMPUTERS AND DIGITAL TECHNIQUES, 1998, 145 (02): : 143 - 148
  • [23] Efficient Scalable Digit-Serial Inverter Over GF(2m) for Ultra-Low Power Devices
    Ibrahim, Atef
    Al-Somani, Turki F.
    Gebali, Fayez
    IEEE ACCESS, 2016, 4 : 9758 - 9763
  • [24] Bit-serial and digit-serial GF(2m) Montgomery multipliers using linear feedback shift registers
    Morales-Sandoval, M.
    Feregrino-Uribe, C.
    Kitsos, P.
    IET COMPUTERS AND DIGITAL TECHNIQUES, 2011, 5 (02): : 86 - 94
  • [25] Low space-complexity digit-serial dual basis systolic multiplier over Galois field GF(2m) using Hankel matrix and Karatsuba algorithm
    Hua, Ying Yan
    Lin, Jim-Min
    Chiou, Che Wun
    Lee, Chiou-Yng
    Liu, Yong Huan
    IET INFORMATION SECURITY, 2013, 7 (02) : 75 - 86
  • [26] A high-throughput fully digit-serial polynomial basis finite field GF(2m) multiplier for IoT applications
    Pillutla, Siva Ramakrishna
    Boppana, Lakshmi
    PROCEEDINGS OF THE 2019 IEEE REGION 10 CONFERENCE (TENCON 2019): TECHNOLOGY, KNOWLEDGE, AND SOCIETY, 2019, : 920 - 924
  • [27] Low Complexity Digit Serial Systolic Montgomery Multipliers for Special Class of GF(2m)
    Talapatra, Somsubhra
    Rahaman, Hafizur
    Mathew, Jimson
    IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, 2010, 18 (05) : 847 - 852
  • [28] Low-Latency Digit-Serial Systolic Double Basis Multiplier over GF(2m) Using Subquadratic Toeplitz Matrix-Vector Product Approach
    Pan, Jeng-Shyang
    Azarderakhsh, Reza
    Kermani, Mehran Mozaffari
    Lee, Chiou-Yng
    Lee, Wen-Yo
    Chiou, Che Wun
    Lin, Jim-Min
    IEEE TRANSACTIONS ON COMPUTERS, 2014, 63 (05) : 1169 - 1181
  • [29] Digit-serial AB2 systolic architecture in GF(2m)
    Kim, NY
    Yoo, KY
    IEE PROCEEDINGS-CIRCUITS DEVICES AND SYSTEMS, 2005, 152 (06): : 608 - 614
  • [30] Low-complexity dual basis digit serial GF(2m) multiplier
    Department of Electrical Engineering, National Taiwan University of Science and Technology, 106 Taipei, Taiwan
    不详
    不详
    ICIC Express Lett., 2009, 4 (1113-1118):