Anomaly classification based on self-supervised learning and its application

被引:1
|
作者
Han, Yongsheng [1 ]
Qi, Zhiquan [2 ]
Tian, Yingjie [1 ,2 ]
机构
[1] Univ Chinese Acad Sci, Sch Econ & Management, 80 Zhongguancun East Rd, Beijing 100190, Peoples R China
[2] Chinese Acad Sci, Res Ctr Fictitious Econ & Data Sci, Key Lab Big Data Min & Knowledge Management, Beijing 100190, Peoples R China
关键词
Self -supervised learning; Anomaly classification; Feature map; Machine learning;
D O I
10.1016/j.jrras.2024.100918
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Background: Anomaly classification remains a challenging task in computer vision applications across diverse practical fields such as industrial detection and security check. The purpose of this study is to develop a new anomaly classification method based on self-supervised learning (Self-ACM), which is expected to enhance anomaly classification accuracy significantly. Methods: The feature maps of images were abstracted using VGG16 model pre-trained on ImageNet, which were then fed into the innovative model to capture the normality distribution within the dataset domain. Then, a selfsupervised adversarial anomaly classification learning framework was proposed to facilitate the acquisition of a higher-level semantic representations for improved anomaly detection. Thirdly, we collected and constructed a novel terahertz (THZ) dataset, which serves as a pioneering resource for benchmarking anomaly classification tasks in the field. Results: Through a series of rigorous experiments, our findings unequivocally demonstrate the following key insights: Firstly, harnessing feature maps as input data yielded a significant enhancement in anomaly detection performance, underscoring the effectiveness of this approach. Secondly, the integration of self-supervision enriched the dataset with invaluable information, empowering both the discriminator and generator to acquire superior feature representations. The culmination of these advancements is our novel method achieving unparalleled state-of-the-art performance across multiple benchmark datasets. This breakthrough underscores the transformative impact of our approach on anomaly detection methodologies, solidifying its position as a pioneering solution in the field. Conclusion: The Self-ACM strategy not only advances anomaly detection methodologies but also offers a remarkable contribution to dataset creation, setting a new standard for anomaly classification research.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] Generative and Contrastive Self-Supervised Learning for Graph Anomaly Detection
    Zheng, Yu
    Jin, Ming
    Liu, Yixin
    Chi, Lianhua
    Phan, Khoa T.
    Chen, Yi-Ping Phoebe
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2023, 35 (12) : 12220 - 12233
  • [32] A NOVEL CONTRASTIVE LEARNING FRAMEWORK FOR SELF-SUPERVISED ANOMALY DETECTION
    Li, Jingze
    Lian, Zhichao
    Li, Min
    2022 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2022, : 3366 - 3370
  • [33] CADet: Fully Self-Supervised Anomaly Detection With Contrastive Learning
    Guille-Escuret, Charles
    Rodriguez, Pau
    Vazquez, David
    Mitliagkas, Ioannis
    Monteiro, Joao
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [34] Deep anomaly detection with self-supervised learning and adversarial training
    Zhang, Xianchao
    Mu, Jie
    Zhang, Xiaotong
    Liu, Han
    Zong, Linlin
    Li, Yuangang
    PATTERN RECOGNITION, 2022, 121
  • [35] Self-Supervised Learning for Anomaly Detection With Dynamic Local Augmentation
    Yoa, Seungdong
    Lee, Seungjun
    Kim, Chiyoon
    Kim, Hyunwoo J.
    IEEE ACCESS, 2021, 9 : 147201 - 147211
  • [36] Understanding the limitations of self-supervised learning for tabular anomaly detection
    Mai, Kimberly T.
    Davies, Toby
    Griffin, Lewis D.
    PATTERN ANALYSIS AND APPLICATIONS, 2024, 27 (02)
  • [37] SELF-SUPERVISED ACOUSTIC ANOMALY DETECTION VIA CONTRASTIVE LEARNING
    Hojjati, Hadi
    Armanfard, Narges
    2022 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2022, : 3253 - 3257
  • [38] Deep self-supervised transformation learning for leukocyte classification
    Chen, Xinwei
    Zheng, Guolin
    Zhou, Liwei
    Li, Zuoyong
    Fan, Haoyi
    JOURNAL OF BIOPHOTONICS, 2023, 16 (03)
  • [39] FEDERATED SELF-SUPERVISED LEARNING FOR ACOUSTIC EVENT CLASSIFICATION
    Feng, Meng
    Kao, Chieh-Chi
    Tang, Qingming
    Sun, Ming
    Rozgic, Viktor
    Matsoukas, Spyros
    Wang, Chao
    2022 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2022, : 481 - 485
  • [40] Self-supervised Learning for Semi-supervised Time Series Classification
    Jawed, Shayan
    Grabocka, Josif
    Schmidt-Thieme, Lars
    ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING, PAKDD 2020, PT I, 2020, 12084 : 499 - 511