Anomaly classification based on self-supervised learning and its application

被引:1
|
作者
Han, Yongsheng [1 ]
Qi, Zhiquan [2 ]
Tian, Yingjie [1 ,2 ]
机构
[1] Univ Chinese Acad Sci, Sch Econ & Management, 80 Zhongguancun East Rd, Beijing 100190, Peoples R China
[2] Chinese Acad Sci, Res Ctr Fictitious Econ & Data Sci, Key Lab Big Data Min & Knowledge Management, Beijing 100190, Peoples R China
关键词
Self -supervised learning; Anomaly classification; Feature map; Machine learning;
D O I
10.1016/j.jrras.2024.100918
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Background: Anomaly classification remains a challenging task in computer vision applications across diverse practical fields such as industrial detection and security check. The purpose of this study is to develop a new anomaly classification method based on self-supervised learning (Self-ACM), which is expected to enhance anomaly classification accuracy significantly. Methods: The feature maps of images were abstracted using VGG16 model pre-trained on ImageNet, which were then fed into the innovative model to capture the normality distribution within the dataset domain. Then, a selfsupervised adversarial anomaly classification learning framework was proposed to facilitate the acquisition of a higher-level semantic representations for improved anomaly detection. Thirdly, we collected and constructed a novel terahertz (THZ) dataset, which serves as a pioneering resource for benchmarking anomaly classification tasks in the field. Results: Through a series of rigorous experiments, our findings unequivocally demonstrate the following key insights: Firstly, harnessing feature maps as input data yielded a significant enhancement in anomaly detection performance, underscoring the effectiveness of this approach. Secondly, the integration of self-supervision enriched the dataset with invaluable information, empowering both the discriminator and generator to acquire superior feature representations. The culmination of these advancements is our novel method achieving unparalleled state-of-the-art performance across multiple benchmark datasets. This breakthrough underscores the transformative impact of our approach on anomaly detection methodologies, solidifying its position as a pioneering solution in the field. Conclusion: The Self-ACM strategy not only advances anomaly detection methodologies but also offers a remarkable contribution to dataset creation, setting a new standard for anomaly classification research.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] Self-supervised Visual Feature Learning and Classification Framework: Based on Contrastive Learning
    Wang, Zhibo
    Yan, Shen
    Zhang, Xiaoyu
    Lobo, Niels Da Vitoria
    16TH IEEE INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION, ROBOTICS AND VISION (ICARCV 2020), 2020, : 719 - 725
  • [22] Classification of Plant Leaf Disease Recognition Based on Self-Supervised Learning
    Wang, Yuzhi
    Yin, Yunzhen
    Li, Yaoyu
    Qu, Tengteng
    Guo, Zhaodong
    Peng, Mingkang
    Jia, Shujie
    Wang, Qiang
    Zhang, Wuping
    Li, Fuzhong
    AGRONOMY-BASEL, 2024, 14 (03):
  • [23] Pyramid-based self-supervised learning for histopathological image classification
    Wang, Junjie
    Quan, Hao
    Wang, Chengguang
    Yang, Genke
    COMPUTERS IN BIOLOGY AND MEDICINE, 2023, 165
  • [24] Image Classification Algorithm Named OCFC Based on Self-supervised Learning
    Shu, Qihui
    Liu, Song
    Wang, Jianwen
    Lai, Qinghan
    Zhou, Zihan
    PROCEEDINGS OF 2020 IEEE 5TH INFORMATION TECHNOLOGY AND MECHATRONICS ENGINEERING CONFERENCE (ITOEC 2020), 2020, : 589 - 594
  • [25] Self-Supervised Learning Malware Traffic Classification Based on Masked Autoencoder
    Xu, Ke
    Zhang, Xixi
    Wang, Yu
    Ohtsuki, Tomoaki
    Adebisi, Bamidele
    Sari, Hikmet
    Gui, Guan
    IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (10): : 17330 - 17340
  • [26] Adaptive Terrain Classification in Field Environment Based on Self-supervised Learning
    Dai, Xiaofang
    Li, Shulun
    Sun, Fengchi
    2014 IEEE CHINESE GUIDANCE, NAVIGATION AND CONTROL CONFERENCE (CGNCC), 2014, : 6 - 11
  • [27] Self-Supervised Classification of Weather Systems Based on Spatiotemporal Contrastive Learning
    Wang, Liwen
    Li, Qian
    Lv, Qi
    GEOPHYSICAL RESEARCH LETTERS, 2022, 49 (15)
  • [28] BYOL-based self-supervised learning for hyperspectral image classification
    Han, Xizhen
    Jiang, Zhengang
    Liu, Yuanyuan
    Zhao, Jian
    Sun, Qiang
    Liu, Jianzhuo
    Hongwai yu Jiguang Gongcheng/Infrared and Laser Engineering, 2024, 53 (10):
  • [29] Self-supervised learning based on discriminative nonlinear features for image classification
    Tian, Q
    Wu, Y
    Yu, J
    Huang, TS
    PATTERN RECOGNITION, 2005, 38 (06) : 903 - 917
  • [30] Transfer learning application of self-supervised learning in ARPES
    Ekahana, Sandy Adhitia
    Winata, Genta Indra
    Soh, Y.
    Tamai, Anna
    Milan, Radovic
    Aeppli, Gabriel
    Shi, Ming
    MACHINE LEARNING-SCIENCE AND TECHNOLOGY, 2023, 4 (03):