An Improved Ultra-Scalable Spectral Clustering Assessment with Isolation Kernel

被引:1
|
作者
Liu, Jinzhu [1 ]
Wu, Peng [2 ]
机构
[1] Nanjing Univ Sci & Technol, Sch Cyber Sci & Engn, Nanjing 210094, Peoples R China
[2] Nanjing Univ Sci & Technol, Sch Intelligent Mfg, Nanjing 210094, Peoples R China
来源
KNOWLEDGE SCIENCE, ENGINEERING AND MANAGEMENT, PT III, KSEM 2024 | 2024年 / 14886卷
基金
中国国家自然科学基金;
关键词
Isolation kernel; Data clustering; Spectral clustering;
D O I
10.1007/978-981-97-5498-4_15
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Spectral clustering is a well-established unsupervised learning technique that can discover clusters with complex shapes in a dataset. However, applying spectral clustering to large-scale data is often prohibitive due to its high computational cost. To address this issue, the ultra-scalable spectral clustering (U-SPEC) algorithm was recently proposed. In this paper, we improve the performance of U-SPEC by incorporating a data-dependent kernel method. We introduce the Isolation Kernel into the U-SPEC framework, resulting in a novel algorithm called IK-USPEC, which can handle datasets with heterogeneous densities. We evaluate IK-USPEC on 11 real-world and synthetic datasets, and show that it outperforms existing state-of-the-art clustering algorithms.
引用
收藏
页码:193 / 205
页数:13
相关论文
共 50 条
  • [41] Scalable Multiple Kernel k-means Clustering
    Lu, Yihang
    Xin, Haonan
    Wang, Rong
    Nie, Feiping
    Li, Xuelong
    PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, CIKM 2022, 2022, : 4279 - 4283
  • [42] mD3DOCKxb: An Ultra-Scalable CPU-MIC Coordinated Virtual Screening Framework
    Peng, Shaoliang
    Zhang, Xiaoyu
    Yang, Shunyun
    Su, Wenhe
    Zhang, Zhiqiang
    Dong, Dong
    Lu, Kai
    Lu, Yutong
    Liao, Xiangke
    Schmidt, Bertil
    Zhu, Weiliang
    Li, Kuan-Ching
    2017 17TH IEEE/ACM INTERNATIONAL SYMPOSIUM ON CLUSTER, CLOUD AND GRID COMPUTING (CCGRID), 2017, : 671 - 676
  • [43] Enabling scalable spectral clustering for image segmentation
    Tung, Frederick
    Wong, Alexander
    Clausi, David A.
    PATTERN RECOGNITION, 2010, 43 (12) : 4069 - 4076
  • [44] A scalable approach to spectral clustering with SDD solvers
    Nguyen Lu Dang Khoa
    Chawla, Sanjay
    JOURNAL OF INTELLIGENT INFORMATION SYSTEMS, 2015, 44 (02) : 289 - 308
  • [45] A scalable approach to spectral clustering with SDD solvers
    Nguyen Lu Dang Khoa
    Sanjay Chawla
    Journal of Intelligent Information Systems, 2015, 44 : 289 - 308
  • [46] Kernel spectral clustering of large dimensional data
    Couillet, Romain
    Benaych-Georges, Florent
    ELECTRONIC JOURNAL OF STATISTICS, 2016, 10 (01): : 1393 - 1454
  • [47] Multi-View Kernel Spectral Clustering
    Houthuys, Lynn
    Langone, Rocco
    Suykens, Johan A. K.
    INFORMATION FUSION, 2018, 44 : 46 - 56
  • [48] Agglomerative Hierarchical Kernel Spectral Data Clustering
    Mall, Raghvendra
    Langone, Rocco
    Suykens, Johan A. K.
    2014 IEEE SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE AND DATA MINING (CIDM), 2014, : 9 - 16
  • [49] Kernel Spectral Clustering for Big Data Networks
    Mall, Raghvendra
    Langone, Rocco
    Suykens, Johan A. K.
    ENTROPY, 2013, 15 (05) : 1567 - 1586
  • [50] An Improved Algorithm On Spectral Clustering
    Lihong
    Zhong Caiming
    2011 INTERNATIONAL CONFERENCE ON ELECTRONICS, COMMUNICATIONS AND CONTROL (ICECC), 2011, : 140 - 144