An Improved Ultra-Scalable Spectral Clustering Assessment with Isolation Kernel

被引:1
|
作者
Liu, Jinzhu [1 ]
Wu, Peng [2 ]
机构
[1] Nanjing Univ Sci & Technol, Sch Cyber Sci & Engn, Nanjing 210094, Peoples R China
[2] Nanjing Univ Sci & Technol, Sch Intelligent Mfg, Nanjing 210094, Peoples R China
来源
KNOWLEDGE SCIENCE, ENGINEERING AND MANAGEMENT, PT III, KSEM 2024 | 2024年 / 14886卷
基金
中国国家自然科学基金;
关键词
Isolation kernel; Data clustering; Spectral clustering;
D O I
10.1007/978-981-97-5498-4_15
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Spectral clustering is a well-established unsupervised learning technique that can discover clusters with complex shapes in a dataset. However, applying spectral clustering to large-scale data is often prohibitive due to its high computational cost. To address this issue, the ultra-scalable spectral clustering (U-SPEC) algorithm was recently proposed. In this paper, we improve the performance of U-SPEC by incorporating a data-dependent kernel method. We introduce the Isolation Kernel into the U-SPEC framework, resulting in a novel algorithm called IK-USPEC, which can handle datasets with heterogeneous densities. We evaluate IK-USPEC on 11 real-world and synthetic datasets, and show that it outperforms existing state-of-the-art clustering algorithms.
引用
收藏
页码:193 / 205
页数:13
相关论文
共 50 条
  • [31] Powered Gaussian kernel spectral clustering
    Yessica Nataliani
    Miin-Shen Yang
    Neural Computing and Applications, 2019, 31 : 557 - 572
  • [32] A survey of kernel and spectral methods for clustering
    Filippone, Maurizio
    Camastra, Francesco
    Masulli, Francesco
    Rovetta, Stefano
    PATTERN RECOGNITION, 2008, 41 (01) : 176 - 190
  • [33] Denoised Kernel Spectral Data Clustering
    Mall, Raghvendra
    Bensmail, Halima
    Langone, Rocco
    Varon, Carolina
    Suykens, Johan A. K.
    2016 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2016, : 3709 - 3716
  • [34] Spectral clustering with the probabilistic cluster kernel
    Izquierdo-Verdiguier, Emma
    Jenssen, Robert
    Gomez-Chova, Luis
    Camps-Valls, Gustavo
    NEUROCOMPUTING, 2015, 149 : 1299 - 1304
  • [35] Kernel spectral clustering with memory effect
    Langone, Rocco
    Alzate, Carlos
    Suykens, Johan A. K.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2013, 392 (10) : 2588 - 2606
  • [36] Constrained Clustering by Spectral Kernel Learning
    Li, Zhenguo
    Liu, Jianzhuang
    2009 IEEE 12TH INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2009, : 421 - 427
  • [37] Powered Gaussian kernel spectral clustering
    Nataliani, Yessica
    Yang, Miin-Shen
    NEURAL COMPUTING & APPLICATIONS, 2019, 31 (Suppl 1): : 557 - 572
  • [38] Ultra-Scalable CPU-MIC Acceleration of Mesoscale Atmospheric Modeling on Tianhe-2
    Xue, Wei
    Yang, Chao
    Fu, Haohuan
    Wang, Xinliang
    Xu, Yangtong
    Liao, Junfeng
    Gan, Lin
    Lu, Yutong
    Ranjan, Rajiv
    Wang, Lizhe
    IEEE TRANSACTIONS ON COMPUTERS, 2015, 64 (08) : 2382 - 2393
  • [39] Etching-enabled ultra-scalable micro and nanosculpturing of metal surfaces for enhanced thermal performance
    Upot, Nithin Vinod
    Rabbi, Kazi Fazle
    Bakhshi, Alireza
    Mendizabal, Johannes Kohler
    Jacobi, Anthony M.
    Miljkovic, Nenad
    APPLIED PHYSICS LETTERS, 2023, 122 (03)
  • [40] Kernel-based clustering via Isolation Distributional Kernel
    Zhu, Ye
    Ting, Kai Ming
    INFORMATION SYSTEMS, 2023, 117